API| Foundations in Go Tit Petric

APl foundations in Go

You've mastered PHP and are looking at Node.js? Skip it
and try Go.

Tit Petric

This book is for sale at http://leanpub.com/api-foundations

This version was published on 2019-01-15

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2019 Tit Petric

http://leanpub.com/api-foundations
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Tit Petric by spreading the word about this book on Twitter!
The suggested hashtag for this book is #apifoundations.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#apifoundations

http://twitter.com
https://twitter.com/search?q=%23apifoundations
https://twitter.com/search?q=%23apifoundations

I'm dedicating this book to my wife, Anastasia. Even if you say that you don’t suffer, 'm sure that
I’'m killing your inner child by explaining what Docker is. I'm sorry for that.

CONTENTS

Contents

Introduction 1
Aboutme 1
Why Go? 1
Who is this book for? 1
How should I'study it? 2

Setting up your environment L L L L 3
Networking 3
Setting up a runner for your Go programs 3
Settingup Redis. 4
Otherservices 5

Datastructures e 6
Declaring structs 6
Casting structs 7
Declaring interfaces 7
Abusing interfaces 8
Embedding and compositiono 9
Limiting goroutine parallelization 11
Slices . . . oo 12
Theslice operator. 13
Allocation by append 14
Copying slices i 15
Using slicesin channels 16

Organizing yourcode 18
Suggested package structure 18
What to put there? 19
Format your source code 20

Encoding and decoding JSON 21
Encoding structs into JSONo 21
Decoding JSON contents into structs 24
Nested structureso 25
Anonymous StTUCES 26

API foundations in Go

CONTENTS

Serving HTTP requests 27
Setting up asimple webserver. 27
Routing logic 29
Routing and middleware with go-chi 31
Advanced middleware - CORS 33
JWT authentication middleware 35

Parallel fetchingofdata 41
Asimple APISErvice oo oo i 41
Makingitparallel. 44
Some tips e 45

Using external services (Redis) 48
Client library 48
Talking to a Redisinstance 48
Worst case scenario 50
Let’sscaledt 51
Connection pool 51

Using external services (MySQL) 54
Quick start 54
Goodbye simplicity 54
Simplicity redux 55
Connection pool 57
Scaling MySQL beyond MySQL 59

Test driven API development 61
Creating a simple APT 61
Testing an APL 61
More detailed testing 64
Anoteontesting 66
Implementing the complete APT 66

Your first APT 69
Putting the APl together 69
Benchmarking it 70
Profiling it 71

Running your APlin production 74
Configuration 74
Building an application 75
Embedding binary assets into an application 76
Serving embedded filesvia HTTP 79
Deploying an application 80

API foundations in Go

CONTENTS

Creating a Dockerimage
Exposing run-time information L o L o

Resources

API foundations in Go

Introduction

About me

I’'m one of those people with about two decades of programming experience under my belt. I started
optimizing code in the ’90s, discovered PHP in the 2000s, and have built several large-scale projects
to date, all while discovering other programming language families like Java, Node.js and ultimately,
Go.

I have built numerous APIs for my own content management products. Several products I've been
involved with as a lead developer have been sold and are used in multiple countries. I've written
a professional, dedicated API framework, which doubles as a software development kit for the
Slovenian national TV and Radio station website, RTV Slovenia. I've also been a speaker at several
local PHP user group events and conferences.

Why Go?

Go has been on my list for a while now. About a year or two ago, my coworker created a protocol
converter that emulates a Memcache server, using Redis as the backend datastore. Since our biggest
project has a code base built up over some 13 years, it was preferable to keep the working code as-is,
and just replace the software around it as needed. Go made this possible.

One of the reasons for choosing Go was the constant comparison of Go with Node. Node has a much
more vocal community, which seems to religiously advocate it. We have carried out several tests in
recent months, and Node, while not very hard to start development with, had poorer performance
than pretty much everything except PHP. I'm not saying that Go is better than Node, or that anything
is better than anything else, but from what we’ve seen, it seems advisable to skip Node.js and go
straight to Go. This might change as ES6 and ES7 get more traction - but there are immediate benefits
of switching to Go. If you don’t want to move from Node.js, this book is not for you. If you have an
open mind - find out what Go can do.

Who is this book for?

This book is for senior developers who might not have had a chance to try Go, but are familiar
with concepts of API development in languages like PHP or Node. Any reader must have a good
understanding of REST APIs and server architecture. While I'll try to make everything as clear as
possible, realize that if you’re a novice programmer, there might be a gap between what you know,
and what I'm trying to explain here.

Introduction 2

I’'m not going to be explaining the Go programming language in detail. I'm going to be diving head
first into using it with just a note here and there. This is why familiarity and strong knowledge of
programming concepts are required.

In the book, I will cover these subjects:

Setting up your environment
Data structures

Organizing your code

Encoding and decoding JSON
Serving HTTP requests

Parallel fetching of data

Using external services (Redis)
Using external services (MySQL)
Test driven API development
Your first API

. Running your API in production
. Resources

e A e

—_
N RO

Covering these concepts should give you a strong foundation for your API implementation. The
book doesn’t try to teach you Go; the book tries to give you a strong software foundation for APIs,
using Go.

How should I study it?

Through the book, I will present several examples on how to do common things when developing
APIs. The examples are published on GitHub, you can find the link in the last chapter of the book.

You should follow the examples in the book, or you can look at each chapter individually, just to
cover the knowledge of that chapter. The examples are stand-alone, but generally build on work
from previous chapters.

API foundations in Go

Setting up your environment

Setting up a development environment, as well as a production environment, is an important
topic today. While spinning up a virtual machine and installing software by hand is perhaps the
accepted way of doing things, recently I've learned to systematize my development by using Docker
containers.

The biggest benefit of Docker containers is a “zero install” way of running software - as you’re about
to run a container, it downloads the image containing all the software dependencies you need. You
can take this image and copy it to your production server, where you can run it without any change
in environment.

Networking

When you have docker set up, we will need to create a network so the services that we’re going
to use can talk to each other. Creating a network is simple, all you need to do is run the following
command:

$ docker network create -d bridge --subnet 172.25.0.0/24 party
This command will create a network named party on the specified subnet. All docker containers

which will run on this network will have connectivity to each other. That means that when we run
our Go container, it will be able to connect to another Redis container on the same network.

Setting up a runner for your Go programs

There is an official Go image available on Docker. Getting a Docker image and running it is very
simple, requiring just one line:

$ docker run --net=party -p 8080:80 --rm=true -it -v “pwd’:/go/src/app -w /go/src/ap\
p golang go "$@"

Save this code snippet as the file ‘go’, make it executable and copy it to your execution path (usually
/usr/local/bin is reserved for things like this).

Let’s quickly go over the arguments provided:

« —net=party - runs the container on the shared network

~N O O b W N =~

Setting up your environment 4

+ -p - network forwarding from host:8080 to container:80 (HTTP server)

« —rm=true - when the container stops, clean up after it (saves disk space)
« -v option - creates a volume from the current path (pwd) in the container
« $@7 - passes all arguments to go to the container application

Very simply, what this command does is run a Docker container in your current folder, execute the
go binary in the container, and clean up after itself when the program finishes.

Note: as we only expose the current working path to the container, it limits access to the host machine

- if you have code outside the current path, for example in “.” or “/usr/share”, this code will not be
available to the container.

An example of running go would be:

$ go version

go version gol.6 linux/amd64
And, what we will do through most of this book is run the following command:

« go run [file] - compile and run Go program

$ go run hello_world.go
Hello world!

A minimal example of a Go program

package main

import "fmt"

func main() {
fmt .Printf("Hello world!\n")

Setting up Redis

We will also use Docker to run Redis, which is as simple as setting up Go. Redis is an in-memory
data structure store. It provides functionality to store and retrieve data in various structures, beyond
a simple key-value database like Memcache. We will use this service later in the book when
implementing our example API endpoints.

To run an instance of Redis named ‘redis’:

API foundations in Go

Setting up your environment 5

$ docker run --restart=always -h redis --name redis --net=party -d redis

Just like Go, Redis provides an official build on the Docker Hub. Interacting with Redis will be
covered in detail in later chapters.

Other services

In addition to Go and Redis, other services are also available on the Docker Hub'. Depending on
your use case, you might want to install additional services via docker.

Popular projects which I use from Docker on a daily basis:

» nginx (and nginx-extras flavours)

« Percona (MySQL, MariaDB) - also covered later in the book
« letsencrypt

« redis

« samba

- php

Docker is a very powerful tool which gives you all the software you might need. It’s very useful
also for testing, as you can use it to set up a database, populate it with test data, and then tear down
and clean up after it. It’s a very convenient way to run programs that are isolated from your actual
environment, and may only be active temporary.

'https://hub.docker.com/

API foundations in Go

https://hub.docker.com/
https://hub.docker.com/

© 00 1 O O b W N =

NN
= O

Data structures

Defining and handling data structures is a key activity in any programming language. When talking
about object oriented programming, it’s worth noting some differences between Go and other
programming languages.

« Go doesn’t have classes, it has structs

« Methods are bound to a struct, not declared within one

« The “interface” type can be an intersection of many or all types

« Packages behave like namespaces, but everything in a package is available

In short, it means that the functions you’ll define for your structs will be declared outside of the
struct they are working on. If you want to declare several types, the only way to assign them to a
same variable, without many complications, is to declare a common interface.

Declaring structs

When we define a structure in Go, we set types for every member. Let’s say we would like to define
the usual “Petstore”, which in turn has a list of pets. You could define the structure like this:

type Petstore struct {
Name string
Location string
Dogs []*Pet
Cats []*Pet
}

type Pet struct {
Name string
Breed string

}

The example is simple, in the sense that I'm not defining a “Pet”, which can be a “Dog”, or can be a
“Cat”. 'm just using one type for all.

© 00 N O O b W N =

=Y
N =~ O

Data structures 7

Note: Members of defined structures begin with an upper case letter. This means that they are visible
outside the package they are defined in. All members, which you will encode to JSON in the next
chapter, need to be public, that is - start with an upper case letter. The same applies to functions that
you expose in packages.

Casting structs

We could declare a Dog and Cat struct, and could cast one to one from the other. A requirement for
this is that the Dog and Cat types must have identical underlying types. So, if I was to extend the
above example, I would copy the Pet struct into Dog and Cat so they are identical.

If they are not identical, the value can’t be cast.

Error when casting

type Dog struct {
name string

}

type Cat struct {
name string
hypoallergenic bool

}

func main() {

Dog{name: "Rex"}
Cat(dog)

dog :

cat :

The above example results in:
./typel.go:12: cannot convert dog (type Dog) to type Cat

Even if “Cat” has all the properties of “Dog”, type conversion is not possible. It makes no sense to
declare strong types of individual animals, if casting to a generic type is not possible. But we can
assign these kind of strong types to a common interface type.

Declaring interfaces

An interface defines zero or more methods that need to be implemented on types/objects that can
be assigned to that interface. If we extend the above example to declare explicit types for Cat and
Dog, we will end up with something like this:

API foundations in Go

O© 00 I O O b W N =~

S
N =~ O

© 00 N O O & W N =

.
(N

Data structures 8

Structure for an agnostic pet list

type Dog struct {
name string
breed string
}
type Cat struct {
name string
hypoallergenic bool
}
type Petstore struct {
name string
pets []interface{}

We are using the declaration of pets as “interface{}”. The interface doesn’t define any common
methods, so anything can be assigned to it. Usually, one would implement getter or setter methods
which should be common to all the types an interface can hold. With our example, we could have
declared a function GetName that would return the name of the Pet:

Structure for an agnostic pet list

type Pet interface {
getName() string

func (d Dog) getName() string {
return d.name

}

func (c Cat) getName() string {
return c.name

Abusing interfaces

Interfaces are a powerful and flexible way to work with objects of varying types. You should however
tend to prefer static type declarations when possible - it makes the code faster and more readable.
The Go compiler catches a lot of your common errors with static analysis. If you’re using interfaces,
you’re exposing yourself to risks and errors which the compiler cannot catch.

All the variables which have been declared in the object are unreachable from the interface and will
result in an error. But that doesn’t mean that you can’t access them.

If you absolutely must, you can use a feature called “reflection”. Reflection exposes the members of
any interface via an APL

API foundations in Go

© 00 N O O & W N =

I S =
O O B W N =~

Data structures

“Hello world!” example using Reflection

package main

import "fmt"

import "reflect"
type Testl struct {

A string

func main() {
var t interface{}
t = Test1{"Hello world!"}

data := reflect.ValueOf(t)

fmt.Printf("%s\n", data.FieldByName("A"))

Interfaces can be a powerful part of Go, but care should be taken not to overuse them. They make
many tasks simpler and can be a powerful tool when they are used correctly.

Reflection is used by many packages to provide generic function interfaces, like the encoding/json

package does, which we will use in a later chapter.

Embedding and composition

You can embed types into a struct by listing them in the struct declaration. This makes all the values
and functions of the embedded struct available for use on your struct. For example, the sync.Mutex

struct implements Lock and Unlock functions.

API foundations in Go

O© 00 I O O b W N =

N
[~

© 00 N O O & W N =

O =Y
O O b W N =~ O

Data structures 10

type Services struct {
sync.Mutex
Servicelist map[string]Service

}

func (r *Services) Add(name string, service Service) {
r.Lock()
r.ServicelList[name] = service
r.Unlock()

This pattern enables composition. You can build your APIs for a larger program from smaller
structures that can deal with specific problem domains. The example also shows a beneficial side-
effect: you can reason that the embedded sync.Mutex is used to lock your structure fields below the
embed.

You can use embedding to your advantage with, for example, sync.Mutex, sync.RWMutex or
sync.WaitGroup. You can actually embed many structs, so your structure may perform the functions
of them all.

An example from a project I'm working on uses two embedded structs:

type RunQueue struct {
sync.RWMutex
sync.WaitGroup
/.

flagIsDone bool

}

func (r *RunQueue) Close() {
r.Lock()
defer r.Unlock()
r.flagIsDone = true

}

func (r *RunQueue) IsDone() bool {
r.RLock()
defer r.RUnlock()
return r.flagIsDone

Leveraging sync.RwMutex

The declaration of the RunQueue struct above leverages the sync.RwMutex to provide synchronous
access to the object from many goroutines. A goroutine may use Close to finish the execution of the
goroutine queue. Each worker in the queue would call IsDone to check if the queue is still active.

API foundations in Go

© 00 N O O & W N =

[= S G o U = G S
© O 00 N O O b» W N ~ O

Data structures 11

Leveraging sync.WaitGroup

The RunQueue struct leverages a sync.WaitGroup to provide queue clean up and statistics, such as
elapsed time. While I can’t provide all the code, the basic usage is as follows:

func (r *RunQueue) Runner() {
fmt.Printf("Starting %d runners\n", runtime.NumCPU())
for idx := 1; idx <= runtime.NumCPU(); idx++ {

go r.runOnce(idx)

}

func NewRunQueue(jobs []Command) RunQueue {
g := RunQueue{}
for idx, job := range jobs {
if job.Selfld == 0 {
q.Dispatch(&jobs[idx])

}
}
g.Add(len(q.jobs)) // sync.WaitGroup
return q
}
runnerQueue := NewRunQueue(commands)

go runnerQueue.Finisher()
go runnerQueue.Runner()
runnerQueue.Wait() // sync.WaitGroup

The main idea of the program I’'m building is that it starts runtime.NumCPU() runners, which handle
execution of a fixed number of commands. The WaitGroup comes into play very simply:

NewRunQueue calls *wg.Add(number of jobs)
Individual jobs are processed with RunQueue.runOnce, and they call *wg.Done()
RunnerQueue.Wait() (*wg.Wait()) will wait until all jobs have been processed

Limiting goroutine parallelization

At one point I struggled to create a queue manager, which would parallelize workloads to a fixed
limit of parallel goroutines. My idea was to register a slot manager, which would provide a pool of
running tasks. If no pool slot is available, it’d sleep for a few seconds before trying to get a slot again.
It was frustrating.

Just look at the loop from the Runner function above:

API foundations in Go

o N O O b W N =

Data structures 12

for idx :=1; idx <= runtime.NumCPU(); idx++ {
go r.runOnce(idx)

}

This is an elegant way to limit parallelization to N routines. There is no need to bother yourself with
some kind of routine allocation pool structs. The runOnce function should only do a few things:

1. Listen for new jobs in an infinite loop, reading jobs from a channel
2. Perform the job without new goroutines

The reason to read the jobs from a channel is that the read from a channel is a blocking operation.
The function will just wait there until a new job appears on the channel it’s reading from.

func (r *RunQueue) runOnce(idx int) {
for {
queuedob, ok := <-r.runQueue
if lok {
return

}

// run tasks

[...]

The job needs to be executed without a goroutine, or with nested *waitGroup.Wait() call. The reason
for this should be obvious - as soon as you start a new goroutine, it gets executed in parallel and
the runonce function reads the next job from the queue. This means that the limit on the number of
tasks running in parallel would not be enforced.

Slices

A Slice is a Go-specific data type, which consists of:

1. a pointer to an array of values,
2. the capacity of the array,
3. the length of the array

If you're working with slices, which you mostly are, you’ll inevitably find yourself in a situation
where you’ll have to merge two slices into one. The naive way of doing this is something like the
following:

API foundations in Go

=~ O O s W N a b W N -

Bw N

Data structures 13

alice := []string{"foo", "bar"}
bob := []string{"verdana", "tahoma", "arial"}
for _, val := range bob {

alice = append(alice, val)

A slightly more idiomatic way of doing this is:
alice = append(alice, bob...)

Theellipsis or variadic argument expands bob in this case to all its members, effectively achieving
the same result, without that loop. You can read more about it in the official documentation:
Appending to and copying slices®

You could use it to wrap logic around log.Printf that, for example, trims and appends a newline at
the end of the format string.

import "log"

import "strings"
func Log(format string, v ...interface{}) {

format = strings.TrimSuffix(format, "\n") + "\n"
log.Printf(format, v...)

Since slices are basically a special type of pointer, this means there are a number of scenarios where
you may inadvertently modify a slice without intending to. Thus, it’s important to know how to
manipulate slices.

The slice operator

The first thing one should be aware of is that the slice operator, does not copy the data to a newly-
created slice. Not being aware of this fact can lead to unexpected results:

a := []string{"r","u","n"}
b := a[1:2]
b[@] = "a"

fmt.Println(a)

*https://golang.org/ref/spec#Appending_and_copying_slices

API foundations in Go

https://golang.org/ref/spec#Appending_and_copying_slices
https://golang.org/ref/spec#Appending_and_copying_slices

O Uk W N

Data structures 14

Does it print [r u n] or [r a n]? Since the slice b is not a copy of the slice, but just a slice with a
modified pointer to the array, the above will print [r a n].

As explained, this is because the slice operator just provides a new slice with an updated reference
to the same array as used by the original slice. From the official reference:

Slicing does not copy the slice’s data. It creates a new slice value that points to the original
array. This makes slice operations as efficient as manipulating array indices. Therefore,
modifying the elements (not the slice itself) of a re-slice modifies the elements of the
original slice.

Source: Go Blog - Slices usage and internals’.

Allocation by append

Appending to a slice is simple enough. As mentioned, the slice has a length which you can get with
a call to 1en(), and a capacity which you can get with a call to cap().

a := []string{"r", "u", "n"}
fmt.Printin(a, len(a), cap(a))
a = append(a, []string{"e"}...)
fmt.Printin(a, len(a), cap(a))
a = a[l:len(a)]

fmt.Printin(a, len(a), cap(a))

The expected output would be:

[r un] 33
[rune] 44
[une] 33

Of course, that’s not how append works. Append will double the existing capacity. This means you’ll
end up with output like this:

[r un] 33
[rune] 46
[une] 35

If you wanted the previous result, you would have to create your own function, which would allocate
only the required amount of items into a new slice, and then copy over the data from the source
slice. This function might look something like this:

*https://blog.golang.org/go-slices-usage-and-internals

API foundations in Go

https://blog.golang.org/go-slices-usage-and-internals
https://blog.golang.org/go-slices-usage-and-internals

O© 00 I O O b W N =

Data structures 15

func suffix(source []string, vars ...string) []string {
length := len(source) + len(vars)
ret := make([]string, length, length)
copy(ret, source)
index := len(source)
for k, v := range vars {
ret[index+k] = v
}

return ret

func main() {
a := []string{"r", "u", "n"}
fmt.Println(a, len(a), cap(a))
a = suffix(a, []string{"e"}...)
fmt.Println(a, len(a), cap(a))
a = a[l1:1en(a)]
fmt.Println(a, len(a), cap(a))

Copying slices

As explained above, “slicing does not copy the slice’s data”. This may sometimes have unintended
consequences. This applies not only to slicing, but also to passing slices into functions.

func flip(source []string) {

source[1] = "a

func main() {
a := []string{"r", "u", "n"}
flip(a)

fmt.Println(a)

The above example will print [r a n]. This is unfortunate, because people intuitively expect slices
to behave much like structs do. Passing a struct will create a copy. A slice will still point at the same
memory that holds the data. Even if you pass a slice within a struct, you should be aware of this:

API foundations in Go

O© 00 I O O b W N =

N S
a b W N =~ O

© 00 1 O O b W N =

I S =Y
a b w0 N =~ O

Data structures 16

type X struct {
c string

source []string

}

func flip(x X) {
x.c = "b"

Xx.source[1] = "a

}

func main() {
a := X{"a", []lstring{"r", "u", "n"}}
flip(a)
fmt.Println(a)

The above will print out a {a [r a n]}. Slices always behave as if they are passed by reference. In
a way they are, as one of the parts of the slice is a pointer to the array of data it holds.

Using slices in channels

If you’re using buffered channels, and are trying to be smart with slices, reusing a slice to keep
allocations down, then you might find that this buffered channel is basically filled with the same
slice over and over. As the slice contains the pointer to the array holding the data, the following
example will have unexpected results:

func main() {

¢ := make(chan []string, 5)

go func() {
item := []string{"hello"}
for i :=0; 1 <5; i++ {
item[@] = fmt.Sprintf("hello %d", i)
c <- item
//time.Sleep(100 * time.Millisecond)

}

1O

for i :=0; i <5; i++ {
item := <-¢

fmt.Printin(item)

API foundations in Go

16
17

g b W N -

a b w N

Data structures 17

The output is:

[hello 4]
[hello 4]
[hello 4]
[hello 4]
[hello 4]

If you uncomment the time.Sleep command in the goroutine, you will most likely get the correct
result:

[hello @]
[hello 1]
[hello 2]
[hello 3]
[hello 4]

At any time when the consumer is reading from the channel, the retrieved slice will be identical,
because only the item in the underlying array is changing. The only solution for this, I believe, is
either finding a way to work with an unbuffered channel (a consumer must always be waiting to
read from the channel), or to explicitly copy the slice which is being put into the channel, like in
this playground example®.

“https://play.golang.org/p/ORPyzfozwY

API foundations in Go

https://play.golang.org/p/ORPyzf0zwY
https://play.golang.org/p/ORPyzf0zwY

© 00 1 O O b W N =

I = U=
W N s,

Organizing your code

Whenever you start a project, there’s always the question of how you will organize your code. Go
gives you the option to organize your code in packages. You can install these packages with the
command gvt fetch [package]. You will use several packages during the book, and the examples
will also create some packages, which we will explain in this section.

Gvt stands for “Go vendoring tool”. Alternatively, you may use go get to install packages into the
global Go namespace. Vendoring your dependencies is a better option, so use gvt, or decide on which
other vendoring tool you would like to use.

It’s perfectly possible to run gvt from Docker. I use this:

function gvt {

echo "== gvt" "$@" "=="
if [$1 == "fetch"]; then
BASE="vendor/"
if [-d "$BASE$2"]; then
return
fi
fi

docker run --dns=8.8.8.8 \
--dns=8.8.4.4 \
--rm=true -i \
-v $(pwd):/go/src \
justincormack/gvt "$@"

Suggested package structure

Depending on how you will organize your API structure, you can create one or many packages. You
create packages in folders. I'm going to call our project “foundations”. I will create one folder:

« foundations/bootstrap - this folder will keep various utility functions

You can create additional packages for whichever API you need, from which you can now import
the foundations/bootstrap package as needed.

© 00 N O O b W N =

S
w N =~ O

Organizing your code 19

What to put there?

The bootstrap package should contain functions that you often need. A very simple function would

be this:

Example bootstrap file - now.go

package bootstrap

import "time"

var StartTime float64

func Now() float64 {
myTime := float64(time.Now().UnixNano()) / 1000000.0
if StartTime < 0.000001 {
StartTime = myTime
}

return myTime - StartTime

If you need to time how long an operation takes, then this function can come in very handy. Since
we're dealing with writing API calls, we will use this function in the following chapters, and we
will add some additional functions along the way.

The function Now will return the time in milliseconds since the last time the function was called. We
also define a public variable StartTime. We can set this variable to 0 to reset the count.

While you save your functions or function groups to individual files, all of the files together compose
the package. You can separate the functions by their intent or responsibility, instead of creating just
one bootstrap.go file and having everything in there.

Example usage of bootstrap package

package main

import "foundations/bootstrap"
import "fmt"

func main() {
fmt.Printf("Time: %.4f\n", bootstrap.Now())
fmt .Printf("Hello world!\n")
fmt.Printf("Time: %.4f\n", bootstrap.Now())

bootstrap.StartTime = 0

API foundations in Go

12
13

Organizing your code 20

fmt.Printf("Time after reset: %.4f\n", bootstrap.Now())

The example above produces this output:

Time: 0.0000
Hello world!
Time: 0.0850

Time after reset: ©.0000

Go supports vendoring, where packages can be downloaded from their VCS locations. This means
that you can use import with the location of the package on GitHub or other code hosting services.
There are a number of tools available for vendoring. I prefer gvt, which I also use in the samples
available on GitHub.

Format your source code

One utility that comes with Go is the go fmt command. It will rewrite your code to use the
commonly-accepted indentation (tabs) and remove semicolons at the end of lines.

There are benefits to this as:

1. You don’t need to worry about some minor formatting when writing code,
2. Reading code from other people becomes easier as the formatting is the same,
3. You need never again discuss spacing or brace position with other devs

The sooner you learn to use it the better. There is a git hook® available which checks if your files
have been formatted before allowing you to commit them into git.

*https://golang.org/misc/git/pre-commit

API foundations in Go

https://golang.org/misc/git/pre-commit
https://golang.org/misc/git/pre-commit

Encoding and decoding JSON

Encoding and decoding JSON documents is a typical requirement of API services. Your RESTful
API endpoints should provide JSON so they can be consumed by HTTP clients and a lot of public
APIs are available in this format as well. It is crucial when writing APIs to familiarize yourself with
parsing and writing JSON data.

The Go standard library provides encoding/json® to provide the functionality of recoding and
encoding JSON contents. The first thing to specify when encoding structures to JSON is the names
of the fields they will be exported as. This is done inside the definition of the structure, using a
backtick character. These annotations are called tags.

A field declaration may be followed by an optional string literal tag, which becomes an
attribute for all the fields in the corresponding field declaration. An empty tag string is
equivalent to an absent tag.

These tags are used by various packages, in addition to encoding/ json.

Encoding structs into JSON

I've already added the json export options, which are recognized by the library encoding/ json,
which we will use for encoding to JSON. Please review the code sample and pay attention to the
definition of structures.

The full example

type Petstore struct {
Name string " json:"name""
Location string " json:"location""
Dogs []*¥Pet " json:"dogs""®
Cats []*¥Pet " json:"cats"®

}

type Pet struct {
Name string "~ json:"name"’

Breed string " json:"breed""

}

“https://golang.org/pkg/encoding/json/

https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Encoding and decoding JSON

type PetStorelList []*Petstore

func main() {
petstorelist := PetStorelList{}
petstore := &Petstoref
Name: "Fuzzy's",
Location: "New York, 5th and Broadway",
}
petstore.Dogs = append(petstore.Dogs,
&Pet {
Name: "Whiskers",

Breed: "Pomeranian"
!

}/

)
petstore.Dogs = append(petstore.Dogs,

&Pet{Name: "Trinity"},

)
petstorelist = append(petstorelist, petstore)

jsonString, _ := json.Marshallndent(petstorelist, "", "\t")

fmt.Printf("%s", jsonString)

22

This will result in a JSON like this:

[

{
"name": "Fuzzy's",
"location": "New York, 5th and Broadway",
"dogs": |
{
"name": "Whiskers",
"breed": "Pomeranian"
},
{
"name": "Trinity",
"breed": ""
}
1,
"cats": null
}

API foundations in Go

Encoding and decoding JSON 23

There are two usual problems which still need solving - the cats array is empty, and some pets
don’t have a breed. We want to remove this data from JSON. For this, there exists an option in
encoding/json, called ‘omitempty’. We can update our struct definition to include this option.

Dogs []*Pet " json:"dogs,omitempty"®

Cats []*Pet ~json:'"cats,omitempty

Note: this option was added within the double quotes, not after.

These hints specify if the fields should be present in the JSON encoded string if they are empty. Keep
in mind, empty in this case means nil, @, false and even empty strings, maps and arrays.

It’s good to consult the documentation” for explanation of additional options, like completely
removing a field from encoding.

As you can see below, the empty array cats, and missing values for breed have been omitted from
the resulting JSON result.

The encoded JSON with omitempty fields
[

{
"name": "Fuzzy's",
"location": "New York, 5th and Broadway",
"dogs": [
{
"name": "Whiskers",
"breed": "Pomeranian"
},
{
"name": "Trinity"
}
]
}

There are other more specific options available when encoding to JSON. Some field types can’t be
encoded to JSON, and you can force the encoding to skip some fields completely.

Notes: skipping empty fields is useful mainly for technical reasons. Skipping empty fields reduces
the amount of data being sent from APIs, which make a nice speed difference on slower connections.
Data is also nicer to inspect visually, as you don’t have to skip over empty data structures.

"https://golang.org/pkg/encoding/json/#Marshal

API foundations in Go

https://golang.org/pkg/encoding/json/#Marshal
https://golang.org/pkg/encoding/json/#Marshal

© 00 N O O & W N =

NN NN NN NN NN S R R Rl s
© 0 9 O O & W N » 0 © 0 9 O U & WN =~ O

Encoding and decoding JSON 24

Decoding JSON contents into structs

Decoding of JSON is fairly straightforward. We will decode the same output we created in the
previous step into a Go struct. We will also use the brilliant spew library® to “dump” this structure
for inspection, so we can see that all the data was decoded without errors.

Example: Decoding JSON contents into structs

type Petstore struct {
Name string "~ json:"name""
Location string " json:"location""
Dogs []*Pet " json:"dogs,omitempty"®
Cats []*¥Pet " json:'"cats,omitempty"®

type Pet struct {
Name string "~ json:"name"™

"~

Breed string " json:"breed,omitempty

type PetStorelList []*Petstore

func main() {
petstorelist := PetStorelList{}

jsonBlob, err := ioutil.ReadFile("example2.json")
if err !'= nil {
fmt.Printf("Error reading file: %s\n", err)

err = json.Unmarshal(jsonBlob, &petstorelist)
if err !'= nil {

fmt.Printf("Error decoding json: %s\n", err)

spew.Dump(petstorelist)

After executing the example, we can see the imported data:

*https://github.com/davecgh/go-spew

API foundations in Go

https://github.com/davecgh/go-spew
https://github.com/davecgh/go-spew

O© 00 I O O b W N =

N
V)

Encoding and decoding JSON 25

Imported data in Go structures

(main.PetStoreList) (len=1 cap=4) {
(*main.Petstore)(0xc820012370) ({
Name: (string) (len=7) "Fuzzy's",
Location: (string) (len=26) "New York, 5th and Broadway",
Dogs: ([]*main.Pet) (len=2 cap=4) {
(*main.Pet) (0xc82000a360) ({
Name: (string) (len=8) "Whiskers",
Breed: (string) (len=10) "Pomeranian"
1.,
(*main.Pet) (0xc82000a3c0) ({
Name: (string) (len=7) "Trinity",

Breed: (string)

P
b
Cats: ([]*main.Pet) <nil>
)
}

Nested structures

Contrary to what you might believe, there’s no need to declare structures individually, you may also
declare and use them in nested form. When dealing with more complex JSON documents, this has
a number of advantages.

Let’s consider this simple JSON file:

{
"id": 1,
"name": "Tit Petric",
"address": {
"street": "Viska cesta 49c",
"zip": "1000",
"city": "Ljubljana",
"country": "Slovenia"
}
}

The type for this JSON document can be declared as:

API foundations in Go

o N O O b W N =

o N O O b W N =

Encoding and decoding JSON 26

type Person struct {
Id int “json:"id"”
Name string " json:"name""
Address struct {
City string “json:"city""
Country string ~json:"country""®

} “json:"address"®

By using this form of declaration, you clearly and explicitly define the hierarchy of the JSON
document you are parsing. Keep in mind that the declaration doesn’t need to define all fields, but
just the ones you will be using. In skipping some fields, you are making the JSON parsing more
resilient to changes in the JSON document.

Anonymous structs

The Address property in the previous section is called an anonymous struct. You may declare the
complete structure as anonymous by explicitly assigning it to a variable:

person := struct {

Id int " json:"id""

Name string ~json:"name"™
Address struct {

City string " json:"city""

Country string " json:'"country""
} “json:"address"®

H3
And you can use this variable the same you would a Person{} from the previous example.
err = json.Unmarshal(contents, &person)

With this, you have mastered the basics of encoding and decoding objects to and from JSON. You
will use this knowledge when returning data from your API services, and when consuming data
from external sources.

API foundations in Go

Serving HTTP requests

RESTful API principles dictate the way applications send and retrieve data from API services. We
will be implementing our RESTful API service using HTTP as the transportation mechanism. We
will take a look at how to provide this with the Go standard library, and then review the usage with
an update to go-chi/chi’.

Setting up a simple web server

Scalability is usually a thing which is achieved by using a specialized load balancer or reverse proxy.
Commonly deployed load balancers might be nginx'®, haproxy'" or traefik'? (the latter written in
Go). These load balancers are used to distribute incoming traffic between two or mode back-end
services, as much for redundancy in case of outages, as well as scaling in the case where a single
instance wouldn’t be able to handle the load.

The approach how to handle back-end services varies. PHP implements a FastCGI interface, with
which a web serve communicates with PHP. If you would be using Node, most likely you’d start
your own HTTP server, and use the excellent express.js** to route request endpoints to individual
API implementations. Much like with Node, you would also implement a HTTP server in Go to do
the same thing. The principles don’t change much.

Let’s use the standard library to create a miniature HTTP server, that will print out the current time
on any request issued to it.

Example: a minimal HTTP microservice

package main

import (
"fmt"
"net/http"
"time"

)

func requestHandler(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "The current time is: %s\n", time.Now())

*https://github.com/go-chi/chi
“%https://www.nginx.com
http://www.haproxy.org/
https://traefik.io/
https://expressjs.com/

https://github.com/go-chi/chi
https://www.nginx.com/
http://www.haproxy.org/
https://traefik.io/
https://expressjs.com/
https://github.com/go-chi/chi
https://www.nginx.com/
http://www.haproxy.org/
https://traefik.io/
https://expressjs.com/

Serving HTTP requests 28

func main() {
fmt.Println("Starting server on port :3000")
http.HandleFunc("/", requestHandler)
err := http.ListenAndServe(":3000", nil)
if err !'= nil {

fmt.Println("ListenAndServe:", err)

Run the server with go run server1.go to start the server, press CTRL+C to terminate it. When you
start the server, open up another terminal and issue a request to see the output:

Verifying that our microservice works

curl -sS http://localhost:3000/
The current time is: 2018-03-12 17:31:38.890281205 +000@ UTC m=+149.061759235

In theory, you would write your individual endpoints as such - microservices. But in practice, it’s
common to group requests from the same problem domain into a single HTTP service. In order to
achieve that, we have to add routing to our application.

API foundations in Go

Serving HTTP requests 29
Routing logic

When writing an API service, we have to think about routing logic. Routing is basically a way to map
the request URL to a handler which provides the response. With this, we will implement different
response logic for defined routes. For example:

1. a /time entry point which will return the current time,
2. a /say entry point which will respond with a Hello based on a parameter “name”

While the standard library doesn’t give us a lot of features, it’s fairly easy to set up the HTTP
handlers to respond to these individual endpoints.

In the /say endpoint, we want to read the parameter “name”, print a greeting if it’s supplied, or just
print Hello ... you. if the parameter is omitted.

Extended microservice with API parameters

package main

import (
"fmt"
"net/http"
"time"

)

func requestTime(w http.ResponseWriter, r *http.Request) {
fmt.Fprintf(w, "The current time is: %s\n", time.Now())

}
func requestSay(w http.ResponseWriter, r *http.Request) {
val := r.FormValue("name"
if val 1= "" {
fmt.Fprintf(w, "Hello %s!", val)
} else {
fmt.Fprintf(w, "Hello ... you.")
}

func main() {
fmt.Println("Starting server on port :3000")

http.HandleFunc("/time", requestTime)
http.HandleFunc("/say", requestSay)

API foundations in Go

Serving HTTP requests 30

err := http.ListenAndServe(":3000", nil)
if err !'= nil {
fmt.Printin("ListenAndServe:", err)

In requestSay we retrieve the parameter “name”, using the r.FormValue'. If this parameter isn’t
present, the returned value will be an empty string.

Verifying that our microservice works

curl -sS http://localhost:3000/say

Hello ... you.

curl -sS http://localhost:3000/say?name=Tit%20Petric
Hello Tit Petric!

Note: The HandleFunc is very explicit about the URL. For example, the server will respond to requests
that are issued to /time, but not /time/ (trailing slash added). In the same way, it will respond with
a 404 error even to a / (index) request, because there is no handler matching that URL. If we would
declare a handler for “/”, it would catch all requests not matched elsewhere.

““https://golang.org/pkg/net/http/#Request.FormValue

API foundations in Go

https://golang.org/pkg/net/http/#Request.FormValue
https://golang.org/pkg/net/http/#Request.FormValue

Serving HTTP requests 31

Routing and middleware with go-chi

There are several frameworks available for HTTP routing in Go, adding various features that you’d
have to bolt onto the standard library. The most often used feature, in addition to routing, is
providing middleware that will add CORS response headers, or print out logging information for
issued requests.

The current favourite go-chi/chi*® provides both a router, and optional handlers in the form of
subpackages. The router is expressive and allows for much more flexibility than the standard library
- adding support for URL parameters, and grouping of routes.

Add the following imports:

"github.com/go-chi/chi"
"github.com/go-chi/chi/middleware"”

And we can modify our example, to add logging middleware and to create a sub-route with an URL
parameter. We want our microservice to respond to requests matching /say/{name}. URL parameters
in chi are defined by encapsulating them in curly braces.

A microservice with nested routes and logging

func main() {
fmt.Println("Starting server on port :3000")

r := chi.NewRouter()

r.Use(middleware.lLogger)

r.Cet("/time", requestTime)

r.Route("/say", func(r chi.Router) {
r.Get("/{name}", requestSay)
r.Get("/", requestSay)

)

err := http.ListenAndServe(":3000", r)

if err !'= nil {
fmt.Println("ListenAndServe:", err)

}

When it comes to URL parameters in chi, they are mandatory. If we would just create a route with
r.Cet("/say/{name}", ..., the route wouldn’t match /say or /say/ requests. We resort to nested
routes in this case, where we register handlers for both the parametrized route (/{name}) and the
default handler.

Phttps://github.com/go-chi/chi

API foundations in Go

https://github.com/go-chi/chi
https://github.com/go-chi/chi

Serving HTTP requests 32

Verifying that our microservice works

curl -sS http://localhost:3000/say

Hello ... you.

curl -sS http://localhost:3000/say/Tit%20Petric
Hello Tit Petric!

As chi contains a number of middleware implementations', we can immediately resort tomiddleware. Logger,
which will log the request details to the standard output.

Logging output from our microservice

go run server3.go

Starting server on port :3000

2018/03/12 18:36:03 "GET http://localhost:3000/say HTTP/1.1" from [::1]:33454 - 200 \
15B in 14.7Tps

2018/03/12 18:36:09 "GET http://localhost:3000/say/Tit%20Petric HTTP/1.1" from [::1]\
133456 - 200 18B in 13.499us

In order to make this work, we had to make a small change to our requestsay handler. In order to
read the URL parameter value, we have to call chi . URLParam:

Updated request handler for URL parameters in chi

func requestSay(w http.ResponseWriter, r *http.Request) {

val := chi.URLParam(r, "name"
if val 1= "" {

fmt .Fprintf(w, "Hello %s!\n", val)
} else {

fmt.Fprintf(w, "Hello ... you.\n")
}

As you see, the rest of the function stays unchanged. This demonstrates a good characteristic of chi
itself, the fact that it’s compatible with the Go standard library. This means, if you find yourself in
a need to migrate from one to the other, you can do this with only minor refactoring.

*“https://github.com/go-chi/chi#middlewares

API foundations in Go

https://github.com/go-chi/chi#middlewares
https://github.com/go-chi/chi#middlewares

Serving HTTP requests 33

Advanced middleware - CORS

A common requirement of API implementations is to provide CORS headers in the HTTP response.
We can use special CORS auxiliary middleware'” from the go-chi project, in order to add them to
our microservice.

Add the following import:
"github.com/go-chi/cors"

After creating the router, you can use the CORS middleware like so:

Example CORS middleware

cors := cors.New(cors.Options{
AllowedOrigins: [Istring{"*"},
AllowedMethods: []string{"GET", "POST", "PUT", "DELETE", "PATCH", "OPTIONS"},
AllowedHeaders: [Istring{"Accept", "Authorization", "Content-Type", "X-CSRF-Toke\
n” 7

AllowCredentials: true,
MaxAge: 300, // Maximum value not ignored by any of major browsers

D)

r.Use(cors.Handler)

After restarting the server, we can verify that the response includes the expected headers:

Verifying that the CORS middleware works

telnet localhost 3000
Trying ::1...

Connected to localhost.
Escape character is '*]'.

GET /say/Tit HTTP/1.0

Origin: my.dev.hostname.local

HTTP/1.0 200 OK

Access-Control-Allow-Credentials: true
Access-Control-Allow-Origin: my.dev.hostname.local
Vary: Origin

Date: Mon, 12 Mar 2018 18:53:20 GMT
Content-Length: 11

Content-Type: text/plain; charset=utf-8

https://github.com/go-chi/cors

API foundations in Go

https://github.com/go-chi/cors
https://github.com/go-chi/cors

Serving HTTP requests 34

Hello Tit!
Connection closed by foreign host.

CORS headers are added to every response, for requests that include the required origin header.
There are other auxiliary middleware available, handling JWT authentication for example'®. You
should familiarize yourself with the complete list", as it might save you a lot of development time.

*https://github.com/go-chi/jwtauth
Phttps://github.com/go-chi/chi#auxiliary- middlewares- - packages

API foundations in Go

https://github.com/go-chi/jwtauth
https://github.com/go-chi/chi#auxiliary-middlewares--packages
https://github.com/go-chi/jwtauth
https://github.com/go-chi/chi#auxiliary-middlewares--packages

Serving HTTP requests 35

JWT authentication middleware

A common use case for APIs is to provide authentication middleware, which will let a client make
authorized requests to your APIs. Generally, your client performs some sort of authentication, and
a session token is issued. Recently, JWT (JSON Web Tokens) are a popular method of providing a
session token with an expire time, which doesn’t require some sort of storage to perform validation.

So what is JWT exactly?

JSON Web Token (JWT) is an open standard (RFC 7519%°) that defines a compact and self-
contained way for securely transmitting information between parties as a JSON object.
This information can be verified and trusted because it is digitally signed.

A token is constructed from three pieces of information:

1. the header, specifying the signature algorithm,
2. the claims, which may also include an expire time,
3. the signature based on header settings

Using these three pieces, it’s possible for your API service to re-create the signature based on data
in the header and in the claims pieces of the JWT. This is possible because this signature is created
using a secret signing key, which is only known to the server.

Creating a signing key for JWT

jwtauth.New("HS256", []byte("K8UeMDPyb9AwFkzS"), nil)

In case your signing key is compromised, you should immediately change it. This will invalidate all
existing issued JWT’s, forcing your clients to re-authenticate to your service.

Claims

JWT claims are the facility with which you state that the client using your API services might be
"user_id": "4337" or similar. Think of it as amap [string]inter face{}, with some casting required.
When your client authenticates against your APL, by performing a login with a client ID and Secret,
you issue a new JWT that doesn’t require you re-authenticating the client in the database, until the
token expires.

It’s a good thing to issue a debug token from your application and write it to the log. This way you’ll
have a valid token to perform testing against your application.

*https://tools.ietf.org/html/rfc7519

API foundations in Go

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

Serving HTTP requests 36

Encoding a testing token

type JWT struct {
tokenClaim string
tokenAuth *jwtauth.JWTAuth

func (JWT) new() *JWT {
jwt = &JWT{
tokenClaim: "user_id",
tokenAuth: jwtauth.New("HS256", []byte("K8UeMDPybOAWFkzS"), nil),
}
log.Println("DEBUG JWT:", jwt.Encode("1"))
return jwt

func (jwt *JWT) Encode(id string) string {
claims := jwtauth.Claims{}.
Set(jwt.tokenClaim, id).
SetExpiryIn(30 * time.Second).
SetIssuedNow()
_, tokenString, _ := jwt.tokenAuth.Encode(claims)

return tokenString

When you’ll create a new JWT object with JWT{}.new(), a debug token will be printed to the log.

2018/04/19 11:35:18 DEBUG JWT: eyJhbGciOiJIUzI1NiIsInR5cCIGIkpXVCJ9.eyJ1c2VyX21kIjoi\
MSJ9.ZEBtFVPPLaT1YxsNpIzVGSnM4Vo7ZrEvpTT jKgfNG6s

You can pass this token via URL query parameter to test GET requests, or use it in your test suite in
order to issue more complex API requests, passing it with the Authorization header, or as a Cookie.

Note: Be very careful that you generate your tokens with an expire time. If you don’t do this, they
will be valid until you change your signing key. Another option is to invalidate individual tokens on
the server side, which requires some sort of database for logging and revoking them. For example:
instead of issuing actual user IDs as the example shows, you’d create a session ID, which you can
additionally validate for expiry/logout.

The example already sets the needed parameters in order so you’ll validate tokens with an expiry
time. If you issue requests to a protected endpoint after the token expires, an error message is
returned, hinting you to re-authenticate on some API call.

API foundations in Go

Serving HTTP requests 37

Protecting APl access with JWT

Each request that comes to the API can include a JWT Verifier. This works similarly to CORS headers
- it tests the presence of a JWT in either the HTTP query string, cookie or Authorization HTTP
header. The result of the verifier are new context variables for the JWT and a possible parsing
errors. The verifier doesn’t break out of the request in case of a missing or invalid token, it’s job
is to provide this information to the Authenticator.

The jwtauth package provides a default verifier, which you can use out of the gate. Let’s add an
utility function to our JWT struct that will return it:

func (jwt *JWT) Verifier() func(http.Handler) http.Handler ({
return jwtauth.Verifier(jwt.tokenAuth)

}

We include this verifier on every request. This makes it possible to pass tokens to API endpoints
which don’t explicitly require an authenticated user. In such cases, you can retrieve and handle any
claims, still providing a valid response in cases where a JWT is not present.

Example setting up a JWT verifier

login := JWT{}.new()

mux := chi.NewRouter()

mux .Use(cors.Handler)

mux .Use(middleware.lLogger)
mux.Use(login.Verifier())

Instead of using mux.Route as we did before, we should use mux.Group()** to split requests into
authenticated and public endpoints. Using Group() allows us to add new handlers, to the existing
global ones. This way we avoid certain API call prefixes like /api/private/*.

Group creates a new inline-Mux with a fresh middleware stack. It’s useful for a group of
handlers along the same routing path that use an additional set of middleware.

**https://godoc.org/github.com/go-chi/chi#Mux.Group

API foundations in Go

https://godoc.org/github.com/go-chi/chi#Mux.Group
https://godoc.org/github.com/go-chi/chi#Mux.Group

Serving HTTP requests 38

Example of using mux.Group

// Protected API endpoints
mux . Group(func(mux chi.Router) {
// Error out on invalid/empty JWT here
mux .Use(login.Authenticator())
{
mux.Get("/time", requestTime)
mux.Route("/say", func(mux chi.Router) {
mux.Get("/{name}", requestSay)
mux.Get("/", requestSay)
)
}
P

// Public API endpoints
mux . Group(func(mux chi.Router) {
// Print info about claim
mux.CGet("/api/info", func(w http.ResponseWriter, r *http.Request) {
owner := login.Decode(r)
resputil.JSON(w, owner, errors.New("Not logged in"))
)
P

The API endpoints /time and /say will now be accessible only with a valid token. For example, if

we issue a request against this endpoint with an expired token, we might end up with something
like:

"error": {

"message": "Error validating JWT: jwtauth: token is expired"

But if we issue a request against /info, we can end up with:

Example response with valid JWT
{

"response": "1"

Or if the token already expired:

API foundations in Go

Serving HTTP requests 39

Example response when JWT expired

{

"error": {

"message": "Not logged in"

This is because we implemented full validation in Decode, or more accurately, our Authenticate
function where we provide a valid claim or an error:

func (jwt *JWT) Decode(r *http.Request) string {
val, _ := jwt.Authenticate(r)

return val

}
func (jwt *JWT) Authenticate(r *http.Request) (string, error) {
token, claims, err := jwtauth.FromContext(r.Context())
if err != nil || token == nil {
return "", errors.Wrap(err, "Empty or invalid JWT")
}
if !token.Valid {
return "", errors.New("Invalid JWT")
}
return claims[jwt.tokenClaim].(string), nil

We use the same Authenticate function to provide the Authenticator() middleware that enforces
JWT usage on private API endpoints. The error in Decode() is ignored, as the called function already
enforces an empty string return. The Authenticator middleware however, returns the error in full:

func (jwt *JWT) Authenticator() func(http.Handler) http.Handler {
return func(next http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
_, err := jwt.Authenticate(r)
if err != nil {
resputil.JSON(w, err)
return

}
next.ServeHTTP(w, r)

1))

API foundations in Go

Serving HTTP requests 40

The full code sample for the above JWT authenticated microservice is available on GitHub*. Feel
free to check it out and take it for a spin.

*https://github.com/titpetric/books/tree/master/api-foundations/chapter4b-jwt

API foundations in Go

https://github.com/titpetric/books/tree/master/api-foundations/chapter4b-jwt
https://github.com/titpetric/books/tree/master/api-foundations/chapter4b-jwt

W N

Parallel fetching of data

When you’re writing a service, you usually don’t get the benefit of starting exactly from scratch.
Mostly, you build upon existing work of those before you, those next to you and public services
which provide value from the start.

There are a few considerations to make, when you’re consuming external services. Is the service
slow? Is the service reliable? Is the connection to the service reliable? What is the worst case scenario,
if the service goes offline?

A simple API service

We will layout a simple API service. We will create the following API endpoints:

e /fullname
o /firstname
e /lastname

All three API calls will accept parameters “firstname” and “lastname”. The endpoint /fullname
will query individual endpoints /firstname and /lastname, getting and decoding JSON data, and
creating a JSON response with both. We will not use advanced routing from the previous chapter,
just to make the example more concise.

For those of you a bit familiar with PHP, we will define a function named json_encode. The function
uses the trick from the chapter of data structures to accept any argument and passes the data to
json.Marshal to return a string. We don’t package this function, but include it directly into our
program. The name of the function starts with a lower-case, which only makes it visible in the
package in which it’s declared (main).

We are also using the foundations/bootstrap package, with the method Now (now.go), declared in
the “Organizing your code” chapter.

Our utility function: json_encode

func json_encode(r interface{}) string ({
jsonString, _ := json.Marshallndent(r, "", "\t")
return string(jsonString[:])

}

With these functions we can implement individual firstname and lastname endpoints. I've added a
200ms and 300ms delay to each one of them respectively, and print out when the function execution
starts, and when it finishes with a call to fmt.Printf.

© 00 N O O b W N =

RN
= O

© 00 1 O O b W N =

NN NN N NN R 1 s sy
O O b W N, 0 O 03O0 O bk Ww N~ O

Parallel fetching of data

Basic API endpoint: getFirstname

42

type FirstName struct {

"ne

Firstname string ~json:"firstname

func getFirstName(w http.ResponseWriter, r *http.Request) {
time.Sleep(200 * time.Millisecond)
value := r.FormValue("firstname")
response := FirstName{Firstname: value}
response_json := json_encode(response)
fmt.Fprintf(w, response_json)

This is a synchronous (blocking) way to request the resources:

Basic API endpoint setup

type FullName struct {
Firstname string "~ json:"firstname""

Lastname string " json:"lastname"®

func getFullName(w http.ResponseWriter, r *http.Request) {
bootstrap.StartTime = 0

firstname_value := r.FormValue("firstname")

lastname_value := r.FormValue("lastname")

var firstname FirstName
var lastname LastName

var fullname FullName

data := url.Values{}
data.Add("firstname", firstname_value)

data.Add("lastname", lastname_value)

// fetch firstname

fn_url := "http://localhost/firstname?" + data.Encode()
fmt.Printf("[%.4f] Fetching url: %s\n", bootstrap.Now(), fn_url)
fn_response, _ := http.Get(fn_url)

fn_contents, _ := ioutil.ReadAll(fn_response.Body)

API foundations in Go

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Parallel fetching of data 43

_ = json.Unmarshal (fn_contents, &firstname)

fullname.Firstname = firstname.Firstname

// fetch lastname

In_url := "http://localhost/lastname?" + data.Encode()
fmt.Printf("[%.4f] Fetching url: %s\n", bootstrap.Now(), ln_url)
In_response, _ := http.Get(ln_url)

In_contents, _ := ioutil.ReadAll(1ln_response.Body)

fmt .Printf("[%.4f] Done fetching\n", bootstrap.Now())

_ = json.Unmarshal(1ln_contents, &lastname)
fullname.Lastname = lastname.lLastname

// return fullname response

response_json := json_encode(fullname)

fmt.Fprintf(w, response_json)

fmt.Printf("[%.4f] Done with response: %#v\n", bootstrap.Now(), fullname)

Sorry for the bit of a long code snippet - it does just this:

reads firstname and lastname from the query string,
creates a new query string for sub-requests,

fetches the firstname,

fetches the lastname,

constructs a full name response

SRR

With the logging and the utility method we have in place, we can time the API request. When we
request /fullname?firstname=Tit&lastname=Petric, we will get something like this.

Starting server on port :80

[0.0000] Fetching url: http://localhost/firstname?firstname=Tit&lastname=Petric
[202.3157] Fetching url: http://localhost/lastname?firstname=Tit&lastname=Petric
[503.8228] Done fetching

[504.1355] Done with response: main.FullName{Firstname:"Tit", Lastname:"Petric"}

API foundations in Go

o N O O b W N =

=~ O O s W N

Parallel fetching of data 44

Making it parallel

So, by default, the calls are blocking, waiting for the previous to finish. The way to make them non-
blocking is to wrap the request in a goroutine. We will also need a way to retrieve this data from
the main thread, so we will create a chan (short for channel). This is a Go data type, which creates
a “pipe” between goroutines in order to exchange data.

Goroutine which requests the firstname API

fn_chan := make(chan []byte, 1)

go func() {
fn_url := "http://localhost/firstname?" + data.Encode()
fmt.Printf("[%.4f] Fetching url: %s\n", bootstrap.Now(), fn_url)
fn_response, _ := http.Get(fn_url)
contents, _ := ioutil.ReadAll(fn_response.Body)

fn_chan <- contents

Q)

When we write to a channel from a goroutine, we must also read from this channel. When we read
from it the process again becomes blocking, so you should read after you’'ve run all your goroutines.

Reading channels and processing the data

fn_contents := <-fn_chan
= json.Unmarshal(fn_contents, &firstname)

fullname.Firstname = firstname.Firstname

ln_contents := <-1n_chan
= json.Unmarshal(1ln_contents, &lastname)

fullname.Lastname = lastname.lLastname

After running a server with requests wrapped in goroutines, the log is something like this:
[0.0000] Fetching url: http://localhost/lastname?firstname=Tit&lastname=Petric
[0.0444] Fetching url: http://localhost/firstname?firstname=Tit&lastname=Petric
[3.177Q] Request with firstname

[5.3557] Request with lastname

[205.9363] Response with lastname

[303.9368] Response with firstname

[306.6057] Done fetching

[306.9421] Done with response: main.FullName{Firstname:"Tit", Lastname:"Petric"}

As we see, the first request and the second request start less than a millisecond apart. The main
thread waits for the first request, and then for the second if it’s still not done.

API foundations in Go

Parallel fetching of data 45

Some tips

There are a few tips I can share, so you might avoid common problems. I violated some of them in the
examples above, but keep in mind - the examples read more like a guide to aid you in transferring
some of your existing concepts of API development from PHP or other programming languages.
They are not exactly best practice in various meanings. They demonstrate a concept by skipping out
on some things like error handling, code organization, and proper execution flow - those things are
up to the reader.

That being said, advice is always good, and I'll try to explain some in individual chapters.

Do hard processing in goroutines

As we saw with http.Get, by default concepts in Go can be blocking. Go itself uses non-blocking I/O
to avoid the system blocking the thread, so different goroutines can be run during the time while
the first is waiting for the I/O operation to complete. This means that you have to use goroutines if
you want to optimize your own execution, like it was shown in the examples above.

[violate this rule a bit by performing json.Unmarshal in the main goroutine. While it’s generally fast,
imagine what would happen if you had to unserialize several 100MB worth of JSON? It’s important
to think about which operations would benefit from a goroutine. Some common examples:

1. Fetching data from multiple external API sources (multiple HTTP requests),
2. Independent processing (fetching contacts and calendar data - distinct sources),
3. Composition (Example by Twitter: Trends, Feed, Who to Follow)

The examples are plentiful when you’re looking at web pages, and which APIs they provide. While
some things need to be done sequentially, there are always opportunities to group this data into one
large batch instead of many small, sequential ones.

A typical thing which might happen in an application is a fetching of a list, for which each list
item needs some additional processing. Some program is going through every item in the twitter
feed, detecting links and embedding images. Some program is going through a list of search results,
pairing them with ratings data from TripAdvisor or some other site.

The next time you’re doing an O(N) operation on a list of N items, perhaps consider if it’s possible to
do them in parallel. Having N*0(1) may mean an improvement of many times - for external data it
shortens the time to the longest request, processing and calculation scales over your available CPUs,
which might mean an improvement of 4x on a very common quad core CPU, if the workload is
finely balanced.

API foundations in Go

=~ O U s W N

N O O b W N =~

Parallel fetching of data 46

The net/http package actually uses goroutines for individual connections, so you might just be fine
if you’re processing 100MB of JSON. Understand your environment.

Create one or many packages for your endpoints

Think of packages as namespaces in PHP. Or just classes, because in many ways they behave
similarly. A “Hello world” service would look something like this:

Example apiservice package, defining HelloWorld

package apiservice

import "fmt"

func HelloWorld() {
fmt.Printf("Hello world!\n")

Where you keep your main.go file, create the folder apiservice/, and in it save apiservice.go file
with the above contents; Remember the data structures chapter - the upper case letter of a function
means that it’s public and you can use it from other packages. Using the package then is as simple
as this:

Example of using the apiservice package

package main

import "foundations/apiservice"

func main() {
apiservice.HelloWorld()

We import the package with foundations/ prefix, which is the name of our project. This is usually
the folder name where your main.go file is located. We will return to this subject with a practical
example in a later chapter.

Measure first
If you need to know how much time something lasts, you should measure it first. Ask yourself: how

will you know which one of your functions is the slowest? How will you know if some times a
function will take 10 seconds, while it usually completes in 10 milliseconds?

API foundations in Go

Parallel fetching of data 47

I have the very strong opinion that, especially for external resources, you have to measure and log
everything in various level of detail, so you can act on what your data is telling you. If you measure
how much time an SQL query is taking to complete, you have to log the query itself so you know
where to look to fix it. If you have a generic http request object, be sure to log the URL along with the
slow response time. The problems you find may not be the problems that you can fix, but without
this data, it’s mostly just stumbling in the dark.

Reverse proxy

Have a solid reverse proxy in front of your go application. Nginx for example can handle multiple
upstreams - this will make your application easier to scale if needed. It also handles upstream fail-
over, if you’re upgrading your cluster one app at a time, or if for some reason, one of the back-ends
crashes and is unavailable.

Trust me, some level of redundancy is good - even if you’re starting development on a single machine,
explore what your options will be in the future and start as close to possible to the final structure of
your services. Even if you’re using nginx to forward requests to a service in go on the same machine,
the value becomes apparent later, when you can add another server and just change a few lines of
configuration in nginx. Scaling in such a case is almost free.

API foundations in Go

© 00 N O O b W N =

I = S =N
B W N e

Using external services (Redis)

Redis is a popular in memory data structure storage. It’s common use is to provide a caching
mechanism that goes beyond a simple key/value store. If you followed the instructions in the “Setting
up the environment” chapter, you already have a Redis node running.

Client library

There are several client libraries available. The library “Redigo” seems to be the most supported and
provides all the interfaces we will need for our examples. To install it, run the following command:

$ gvt fetch github.com/garyburd/redigo/redis

A very simple Redis connection can be made by calling “redis.Dial”. Save this file under foundations/bootstrap

as redis.go to provide a simple interface.

redis.go bootstrap package

package bootstrap

import "time"

import "github.com/garyburd/redigo/redis"

var (
connectTimeout = redis.DialConnectTimeout(time.Second)

readTimeout redis.DialReadTimeout(time.Second)

writeTimeout = redis.DialWriteTimeout(time.Second)

func GetRedis() (redis.Conn, error) {

return redis.Dial("tcp", "redis:6379", connectTimeout, readTimeout, writeTimeout)

You now have everything for our first example.

Talking to a Redis instance

Redis provides several commands that implement various data structure storage and retrieval. Most
of the commands are very fast, and return data faster than a millisecond.

© 00 N O O & W N =

T =
g b 0 N =~ O

O© 00 I O O b W N =

Using external services (Redis) 49

A simple Redis command - PING

package main
import "foundations/bootstrap”
import "log"

import "fmt"

func main() {

redis, err := bootstrap.GetRedis()
if err !'= nil {

log.Fatal("Fatal error: ", err)
}

fmt .Printf("[%.4f] Starting\n", bootstrap.Now())
pong, err := redis.Do("PING")
fmt.Printf("[%.4f] Response %s, err %%v\n", bootstrap.Now(), pong, err)

The simplest of all Redis commands is “PING”, which just returns “PONG” in less than a millisecond.

Example run of PING

== go run redisl.go ==
[0.0000] Starting
[0.4575] Response PONG, err <nil>

As we did in the previous chapter using HTTP APIs, we would like to fetch some data from Redis.
Redis provides a command DEBUG SLEEP which takes the number of seconds to wait, before returning
an OK. We will use it to provide a delay of 100ms and 200ms for two consecutive Redis calls.

Two long-running commands

fmt.Printf("[%.4f] Starting\n", bootstrap.Now())

sleepl, err := redis.Do("DEBUG", "SLEEP", "0.1")
fmt.Printf("[%.4f] End Sleep 100ms, result %s err %v\n",
bootstrap.Now(), sleepl, err)

sleep2, err := redis.Do("DEBUG", "SLEEP", "0.2")
fmt.Printf("[%.4f] End Sleep 200ms, result %s err %v\n",
bootstrap.Now(), sleep2, err)

As we can see here, the first one sleeps for 100ms, and the second for 200ms.

API foundations in Go

Using external services (Redis) 50

Output of the example commands

== go run redis2.go ==

[0.0000] Starting

[101.0354] End Sleep 10@ms, result OK err <nil>
[301.9424] End Sleep 200ms, result OK err <nil>

Redis is single threaded, meaning that there will be no advantage in using goroutines - two
commands are never run in parallel on one server, and while one command is executing, the next
one is waiting for the previous one to finish. This might sound bad, but keep in mind, Redis can
handle millions of very small operations very fast. A connection to a Redis server takes several
hundred magnitudes more time than a simple GET.

Worst case scenario

If one command will run for a longer amount of time, it would mean that all other commands are
waiting for it to finish. If one command runs for a 100ms, you basically stopped all your clients for
this amount of time.

Redis provides a - -intrinsic-latency option to it’s redis-cli program, which you can use to analyze
live traffic to your Redis instance. For example, a production cluster I'm running, I've ran the
following command to get the maximum latency within a 100 second period:

$ redis-cli --intrinsic-latency 100
Max latency so far: 254 microseconds.

7736079 total runs (avg latency: 12.9264 microseconds / 129264.45 nanoseconds per ru\
n.

Worst run took 20x longer than the average latency.

As you can see, the latency is ridiculously low. At the worst case, 'm handling ~3.800 req/s. At the
average case, I'm handling ~83.000 req/s. But, let’s say that it’s possible that you’re hitting a CPU
limit. Looking at Redis SLOWLOG might give us an idea of the true worst case.

3) 1) (integer) 107
2) (integer) 1459739957
3) (integer) 21958
4) 1) "GET"
2) "api:schedule:list:TVS1:2016-04-07"

This is one of the worst-case slow queries on my system, and it’s clocking in at 21.958 microseconds
(about 22 milliseconds, or 0.022 seconds). If it was common (it’s not), it would reduce the request
rate to about 45 requests per second. It took 3 full months to get a SLOWLOG with 110 entries, so I
have quite some breathing room.

API foundations in Go

=~ O U s W N

Using external services (Redis) 51

Let's scale it

Scaling Redis is not uncommon. People do it for various reasons - because Redis is single threaded it
can’t use more than 1 CPU core. Running several redis instances on the same server is very logical
in this sense. We also do it to provide fail-over mechanisms in our cache cluster - if one host goes
offline, the workload balances out over the remaining cluster.

To scale to many Redis servers, your application will need to maintain a connection pool. Individual
queries will run on different servers, so the response of one will not wait for the previous one. We
will create and use two redis instances, named redis1 and redis2. Use this bash script to run them
with docker:

#]/bin/bash
NAMES="redis1 redis2"
DOCKERFILE="redis"
for NAME in $NAMES; do
docker rm -f $NAME
docker run --restart=always -h $NAME --name $NAME --net=party -d $DOCKERFILE
done

Connection pool

Let’s make a connection pool with our long-running command example. We want to create two
goroutines which use different connections, so the requests can run in parallel. Keep in mind, that
the true value of such a connection pool is when you run an API service, and not when you run a
simple command line program. In the command line, we will need to warm up the connection pool,
so we can skip the latency penalty of establishing a connection.

There exists a battle-tested implementation of a connection pool - as a package of the Vitess project
by YouTube. I implemented two functions - one for establishing the pool, and another to run
individual Redis commands on a connection from this pool. Install the following packages:

$ gvt fetch github.com/youtube/vitess/go/pools
$ gvt fetch golang.org/x/net/context

We will create our pool with similar options, to how we create a stand-alone Redis connection. The
function getServerName returns “redis1:6379” or “redis2:6379” in sequence.

API foundations in Go

© 00 N1 O O b W N =

RN
=

Using external services (Redis) 52

Creating a Redis connection pool

func RedigoPool() *pools.ResourcePool {
if l!hasPool {
capacity := 2 // hold two connections
maxCapacity := 4 // hold up to 4 connections

idleTimeout := time.Minute

pool = pools.NewResourcePool(func() (pools.Resource, error) {
serverName := getServerName()
c, err := redis.Dial("tcp", serverName, connectTimeout, readTimeout, writeTime\
out)

fmt.Println("New redis connection: + serverName)
return ResourceConn{c}, err
}, capacity, maxCapacity, idleTimeout)

}

return pool

When you create a pool, be sure to also use pool.Close() for when you shut down the application.

redis := bootstrap.RedigoPool()
defer redis.Close()

We will create an utility function RedigoDo with the same interface as redis.Do. I made this choice,
because as the pool works, the connection is retrieved from the pool with pool.Get, you call your
command on the active connection, and then you have to return the connection back to the pool
with pool .Put, so it’s available for further use. If we could have avoided the pool .Put command,
we wouldn’t need to make this utility function.

Executing a Redis command on a pooled connection

func RedigoDo(commandName string, params ...interface{}) (interface{}, error) {
ctx := context.TODO()
r, err := pool.Get(ctx)
if err !'= nil {

nn

return , err

}
defer pool.Put(r)

¢ := r.(ResourceConn)

return c.Do(commandName, params...)

This is all we need to do to create and use many connections from a connection pool. Let’s use it in
some goroutines and check to see that is works as it should.

API foundations in Go

Using external services (Redis) 53

Running a Redis command from a goroutine

go func() {
fmt .Printf("[%.4f] Run sleep 10@0ms\n", bootstrap.Now())
sleepl, err := bootstrap.RedigoDo("DEBUG", "SLEEP", "©.1")

if err !'= nil {
sleepl = "ERROR"
}
sleepl_chan <- sleepl.(string)
1O

We use channels as we have learned in the previous chapter. Reading from a channel will wait until
there is data available. Since we’re using two servers, the commands are run in parallel - a sleep of
100ms and a sleep of 200ms will finish just after 200ms.

New redis connection: redis1:6379

New redis connection: redis2:6379

[0.0000] Start

[0.1724] Run sleep 200ms

DEBUG: bootstrap.ResourceConn{Conn: (*redis.conn)(0xc82007eb40)}
[0.9338] Run sleep 100ms

DEBUG: bootstrap.ResourceConn{Conn: (*redis.conn)(0xc82007ecaad)}
[102.4917] End Sleep 100ms, result OK

[204.8770] End Sleep 200ms, result OK

Great success! As you can see, two redis connections are started in the pool. Two sleep commands are
run in goroutines, which are executed on different connections to different redis servers. Individual
100ms and 200ms requests complete in the time of the longest request.

When you’ll be running code in production, you may need to restructure it in a way, that will give
you an actual connection, which you can use in your single goroutine. This is very important if
you’re using Redis in a transactional way with MULTL If you’re using it for simple GET or more
complex, but still single-query statements, then you’re fine with the example provided.

API foundations in Go

Using external services (MySQL)

I hope you’re familiar with MySQL. We will create a database connection to a MySQL server, and
much like in previous examples, try to make a connection pool and run multiple queries in parallel.
We will use the available “database/sql” package for access to our database.

Quick start

We will need a MySQL driver. To install it run the following:

$ gvt fetch github.com/go-sql-driver/mysql

And to use it, add the following import line to your main.go file:
import _ "github.com/go-sql-driver/mysql”

The underscore after the import line imports the package only for it’s side effects. The MySQL driver
adds a driver implementation to the base sql package. This way the driver for MySQL gets added,
but you don’t actually have anything to use from the mysql package.

Opening a database connection is as simple as:
db, err := sqgl.Open("mysql", "api:api@tcp(db1:3306)/api")

And with that, you can start using the “db” object.

Goodbye simplicity

If you’re familiar with PHP, and have a reasonable implementation of a database class, your query
might look as simple as this:

$db->query("select * from table
where field1=? or field2=?",
$fieldl, $field2)

If you’re a bit closer to Ruby DBI:

© 00 N O O b W N =

N O S =Y
O b W N =~ O

Using external services (MySQL) 55

sth = dbh.prepare("SELECT * FROM EMPLOYEE
WHERE INCOME > ?")

The one thing which these two languages (and other web-targeted languages) have in common is
how simple it is to fetch a row from the database and read each rows columns. With PHP you can
fetch it into an array (hash or numeric index array) and Ruby also has the same thing with the fetch
method, for over a decade, from what I can glance in the documentation.

This is the way you run a Query in go:
stmt, err := conn.Query("show databases;")

And the not-so-simple part:

Fetching a result set from the database

func showDatabases(conn *sql.DB, sql string) error {
stmt, err := conn.Query(sql)
if err !'= nil {
return err
}
defer stmt.Close()
for stmt.Next() {
var name string
if err := stmt.Scan(&name); err != nil {

log.Fatal(err)

}

fmt.Printf("Database: %s\n", name)
}
return nil

You'll notice in the very specific example, that I'm dealing with only one column, and I'm fetching
the data explicitly by columns. The database/sql package doesn’t provide me with a simple Fetch
or FetchAll method, and putting the resulting rows into a map/array comes with some processing
as to how many columns your results have, and the obvious caveat - what are the column types.

Simplicity redux

While I struggled if I should write an utility function that uses reflection to put all the returned data
from the database into a struct, I realized that I'm probably not the first person to identify the same
problem. It was amusing finding reports like these on Stack Overflow:

API foundations in Go

© 00 N O O b W N =

T S =Y
O O B W N =~ O

Using external services (MySQL) 56

if the easy way is to manually bind columns to
struct fields I'm wondering what's the hard way

- Anthony Hunt Sep 6 ‘15 at 20:36

In the same Stack Overflow thread a person suggested to use jmoiron/sqlx. The library provides a
much needed abstraction of the “low level” sql package. Let’s install it now:

$ gvt fetch github.com/jmoiron/sqlx

And now let’s quickly adapt our example:

Fetching a result set from the database, redux

type Database struct {
Name string “db:"Database""

func main() {
db, err := sqlx.Open("mysql", "api:api@tcp(db1:3306)/api")
if err !'= nil {

log.Fatal("Error when connecting: ", err)

}

databases := []Database{}

err = db.Select(&databases, "show databases")
if err !'= nil {

log.Fatal("Error in query: ", err)

}

spew.Dump (databases)

You may notice, how the example includes basically the whole application. The resulting structure
returned into the “databases” variable is like follows:

API foundations in Go

O O B W N

Using external services (MySQL) 57

([]main.Database) (len=2 cap=2) {
(main.Database) {

Name: (string) (len=18) "information_schema"
1

(main.Database) {

Name: (string) (len=3) "api"

}
}

In other words - a traversable, typed result set, created by one line of code. Simplicity.

Connection pool

Like in the previous example, we want to create a connection pool that will hold one or many
database connections. We will again be using Vitess for this. As MySQL is a threaded server, we can
connect to the same server twice, and the queries on each connection will run in parallel.

We will create a similar pool to what we had with Redis, only we will provide two functions in ad-
dition to the connection pool one. We will define SqlxGetConnection and SqlxReleaseConnection.
This way we can get only one connection inside a goroutine, and re-use it for many queries (and
even transactions!).

Setting up a connection pool is simple:

pool := bootstrap.SglxConnectionPool()
defer pool.Close()

We should warm up our connection pool for our test, just to get the timings right. Connecting to a
database takes some time, as you would expect.

// warm up the connection pool

for i:=0; i<5; i++ {
db, _ := bootstrap.SqlxGetConnection()
db.Ping()
bootstrap.SglxReleaseConnection(db)

Let’s test the multi-threaded nature of MySQL by issuing a SLEEP SQL query;

SLEEP(duration)

API foundations in Go

Using external services (MySQL) 58

Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. The
duration may have a fractional part

By issuing SLEEP(0.1) and SLEEP(0.2) we can replicate the same behaviour we used as an example
in previous chapters. In a goroutine we will issue an SQL query like this:

Running an SQL Query from a goroutine

go func() {
db, err := bootstrap.SqlxGetConnection()
if err !'= nil {

"

log.Fatal("Error when connecting: ", err)

}
defer bootstrap.SqlxReleaseConnection(db)

fmt.Printf("[%.4f] Run sleep 100ms\n", bootstrap.Now())

fromSleep := SleepResult{}
err = db.Get(&fromSleep, "select sleep(@.1) as sleepfor")

if err !'= nil {
sleepl_chan <- "ERROR"
return

}

sleepl_chan <- fromSleep.Result

10

As we’re doing everything right, we get this pretty, expected output:

New mysql connection: 1

New mysql connection: 2

[0.0000] Start

[0.1714] Run sleep 200ms

[0.3037] Run sleep 100ms

[101.0024] End Sleep 100ms, result 0
[201.1951] End Sleep 200ms, result 0

In MySQL, 1 connection represents 1 thread. Depending on the number of CPUs you have
available, only a few threads are needed to completely saturate MySQL with an SQL workload. The
recommended amount of pool connections is about 2-3 times the CPUs available on a MySQL server.
If you have an 8 core machine, 24 pooled connections is more than enough. The more connections
you add, the more RAM you use - but you don’t increase performance.

API foundations in Go

Using external services (MySQL) 59

Scaling MySQL beyond MySQL

I’'m a big fan of planning for disaster case scenarios - and with MySQL I think I’'ve faced more than
many. It made me very proficient at using SQL indexes, as well as pay attention to common issues
that forced us to scale to many instances and shard our data. This is what the YouTube project Vitess
is trying to solve and it deserves an honourable mention.

Scaling connections

One MySQL connection takes about 2-3 Megabytes RAM. A part of Vitess is a program called
vttablet, which pools these connections, and can only hold a few connections between it and
MySQL. This is a good way to save some memory in MySQL. The application also provides statistics
and monitoring to help with operations.

Scaling servers

At one point, you’ll be forced to create one or many replicas, so you can scale your read volume, or
to split your read volume from your write volume. There are other complexities here, like promoting
a slave to a master, sharding your data, and failing over queries in case of failure. Vitess provides
a vtgate application that handles this logic from configuration, so your application logic can stay
simple.

Stopping bad queries

Vitess looks at the queries that are going through it, to find and prevent common problems. A very
common example of bad practice are queries that are performing a full table scan - Vitess will add
a LIMIT clause to queries that it detects as bad. If some query is causing a lot of problems Vitess
will blacklist it, so your site can keep running. Hopefully, the query which was blacklisted wasn’t
important.

Statistics

Vitess provides detailed statistics that can aid you in pinpointing database performance problems.
Statistics are a pain point in MySQL itself - running a query log in production is very expensive,
and there are next to no runtime statistics that are provided by MySQL itself.

As we struggled with this problem for over a decade, we switched our servers out for Percona fork
of MySQL years ago. If you're not prepared to use Vitess yet, the Percona fork is a stable, giving
measurable benefits in performance and diagnostics.

In fact, running a Percona build of MySQL is as simple as this:

API foundations in Go

O© 00 I O O b W N =

T = =Y
O O B W N~

17

Using external services (MySQL) 60

#!/bin/bash
NAME="db1"
DOCKERFILE="percona:latest"

if [! -d "/src/$NAME/data"]; then
mkdir -p /src/$NAME/data
fi

docker rm -f $NAME
docker run --restart=always \
-h $NAME \
--name $NAME \
--net=party \
-v /src/$NAME/conf/conf.d: /etc/mysql/conf.d \
-v /src/$NAME/data:/var/lib/mysqgl \
-e MYSQL_ROOT_PASSWORD=$PASSWORD \
-d $DOCKERFILE

It should work out better than the default MySQL server. The Percona guys write a blog, which
is full of nice articles on performance optimization - anything from setting the correct indexes, to
performance of UUIDs. You should add it to the list of mandatory reading.

API foundations in Go

Test driven APl development

As I suggested in the previous chapter, the best way to structure your API is to contain it within a
package. We will not be very complicated in this, so we will just create a package “api” and create
our implementation there. We will nest our functions under the Registry struct, so you will use an
api.Registry value to implement your APL

Creating a simple API

Our goal is to create a simple API which will perform the following:

« /get with parameter key - will return value from redis
« /set with parameters key, value - will set a key/value pair
« /getAll retrieve all redis keys

But first, we will make a local implementation of all the required functions. These functions will use
our existing Redis interface code in foundations/bootstrap, so they can implement value storage.

Testing an API

When you’re developing an AP], it is recommended to build tests for the API as you build it. This
way, you don’t need to implement the complete API client to verify that it works as it should, but can
interface with the API package even without a HTTP server/client structure, as you're developing
it.

Let’s first install the needed packages/libraries for our implementation:

Install all dependencies for our API package

gvt fetch "github.com/garyburd/redigo/redis"
gvt fetch "github.com/youtube/vitess/go/pools”
gvt fetch "golang.org/x/net/context"

Testing code in Go is done with the go test command. When we are creating our API package, we
need to create these files: registry.go and registry_test.go. The last file should contain all the
tests you need to perform to see that everything implemented in the first file works as it should.

© 00 N O O & W N =

= =y
© 00 N O O = W N =~ O

© 00 N O O b W N =

RN
= O

Test driven API development 62

A partial implementation of our API

type Registry struct {
Name string

func (r Registry) GetKey(key string) string {
return r.Name + ":" + key
}
func (r Registry) Get(key string) (string, error) {
k := r.GetKey(key)
return redis.String(bootstrap.RedigoDo("GET", k))
}
func (r Registry) Del(key string) (interface{}, error) {
k := r.GetKey(key)
return bootstrap.RedigoDo("DEL", k)
}
func (r Registry) Set(key string) (interface{}, error) {
k := r.GetKey(key)
return bootstrap.RedigoDo("SET", k)

We implement some of our commands, and when we are far enough to test them, we create a
function in registry_test.go to call the functions we have implemented.

How to test our API

func TestRegistryGet(t *testing.T) {
redisPool := bootstrap.RedigoPool()
defer redisPool.Close()

reg := Registry{Name: "test"}
reg.Del("name"

val, err := reg.Get("name"

if err == nil || val != "" {

t.Errorf("Unexpected result when getting name: %s/%s\n", val, err)

There can be multiple testing functions in this file, each testing individual aspects or usage patterns
in your APL Each testing function should test expected return values from your API, and issue an
error if something unexpected occurred. Getting test results is as simple as running:

API foundations in Go

© 00 N O O b W N =

= U SN
W N s,

Test driven API development 63

$ go test
PASS
ok _/go 0.245s

This tells us that whatever tests we have implemented performed as expected (no failures). The
additional option “-cover” gives us a more complete picture of tests:

$ go test -cover

PASS
coverage: T1.4% of statements
ok _/go 0.224s

Code coverage is a number that tells us, how many lines of code out of all the lines of code have
been run. In our case, we have a code coverage of 71.4%, which tells us that 28.6% of code was never
executed. If you look at our API implementation and at our API tests, you will see the reason - our
API function Set is not being tested yet. Let’s add a few lines to our test:

How to test our API

func TestRegistrySet(t *testing.T) {
redisPool := bootstrap.RedigoPool()
defer redisPool.Close()

reg := Registry{Name: "test"}

status, err := reg.Set("name", "Tit Petric")

if status != "OK" || err != nil {
t.Errorf("Error when using SET: %s", err)

}

val, err := reg.Get("name")

if err != nil || val != "Tit Petric" {

t.Errorf("Got error when getting name: %s/%s\n", val, err)

And re-run go test to see what the testing result is:

$ go test

_/go

./registry_test.go:26: too many arguments in call to reg.Set
FAIL _/go [build failed]

Ah! We already found our first error when testing. It seems we didn’t implement all the arguments
for the Set function, which should also take a key value. Let’s fix it:

API foundations in Go

W N

Test driven API development 64

A partial implementation of our API

func (r Registry) Set(key string, value string) (interface{}, error) {
k := r.GetKey(key)
return bootstrap.RedigoDo("SET", k, value)

}

Re-running the test leaves us with another error:

--- FAIL: TestRegistrySet (0.22s)
registry_test.go:32: Got error when getting name: %!s(<nil>)/%!s(<nil>)

FAIL
exit status 1
FAIL _/go 0.441s

Remember how we use a pool of connections? When we use commands like “SET”, immediately
followed by a command like “GET”, they will use two different connections. The value for SET
would be written on one connection (own server, redis1), and read from another (redis2) with GET,
causing the error above. The test is failing because we’re not GETting the value we expected, just
after issuing a SET.

I quickly modified the bootstrap package, so getServerName (redigo.go) gives only one server name
to connect to. I also decreased the connection pool capacity to 1. The correct way do handle this
would be to get a connection from the pool and re-use it for the complete test, as we did with the
MySQL connections in the previous chapter.

$ go test -cover

PASS
coverage: 100.0% of statements
ok _/go ©.497s

Our tests now cover all of our code. What this means is that each line gets executed at least once,
and that whatever tests we made, get expected results from our API implementation.

More detailed testing

When you’re developing an API, you’re usually interested in many aspects in regards to test
coverage. Go provides tooling which allows you to get more details from your tests and your
application.

Storing the coverage profile

To run your tests, storing a coverage profile, you can issue the following command:

API foundations in Go

Test driven API development 65

$ go test -coverprofile="coverage.out" -covermode count

PASS
coverage: 100.0% of statements
ok _/go 0.418s

The covermode parameter accepts the values: set (default), count and atomic. The value set just
answers if a statement was run or not (boolean value), while the value count answers how many
times it was run (number). The atomic setting is meant to provide reliable counts with parallel
processing.

With the coverage profile, we can use go tool cover to get additional reports.

Coverage by function

We can display coverage by function, letting us know which functions are not yet tested, or need
more complete tests.

$ go tool cover --func="coverage.out"

_/go/registry.go:8: GetKey 100.0%
_/go/registry.go:11: Get 100.0%
_/go/registry.go:15: Del 100.0%
_/go/registry.go:19: Set 0.0%

total: (statements) 71 .4%

Coverage HTML

We can also generate a code coverage report in HTML format, that gives us a better overview of test
coverage.

$ go tool cover -html=coverage.out -o coverage.html

API foundations in Go

Test driven API development 66

_Igolregistry.go (100.0%)

return r.name + ":"

Result without parameter, got expected greeting.

The coverage report makes use of the cover mode displaying lines that have higher coverage in a
bright-green colour.

A note on testing

I tend to keep high (as in 100%) code coverage for my core components. Even with such code
coverage, issues occasionally happen. Tests don’t predict all possible scenarios - you're testing your
own code, which uses libraries which may introduce unpredictable behaviour - like calling “panic”
in some edge cases, or conditional results which may vary on situation.

Tests tell you exactly what you ask from them. You predict scenarios and behaviour and enforce that
your implementation follows them in any cases that you imagine. Even with a 100% code coverage, a
new usage pattern might emerge that will result in an issue that needs to be resolved. A great example
of this is the SET+GET behaviour at the start of this chapter. Even with 100% code coverage, an issue
occurred and needed to be fixed outside of our API implementation - our application and our tests
needed no changes.

A tested program works in all the way you imagined, and it fails in all the ways you did not.

Implementing the complete API

As we already created our “Get” and “Set” functions, we will now implement a “GetAll” function
and the test for it.

API foundations in Go

O© 00 I O O b W N =

10
11

Test driven API development 67

Our final API method: GetAll

func (r Registry) GetAll() (map[string]string, error) {
k := r.GetKey("*"
keys, err := redis.Strings(bootstrap.RedigoDo("KEYS", k))
allkeys := map[string]string{}
if len(keys) == 0 || err != nil {
return allkeys, nil

}
for _, value := range keys {
value_redis, err := redis.String(bootstrap.RedigoDo("GET", value))
if err == nil {
allkeys[value[len(r.Name+":"):]] = value_redis
}
}
return allkeys, nil

The function uses the KEYS method of Redis to loop through the namespace and return all the keys
with our Registry name (prefix). All the available keys are put in a map[string]string (array). We
can check if we have the “name” index set in our test:

Testing GetAll output

func TestRegistryGetAll(t *testing.T) ({
redisPool := bootstrap.RedigoPool()
defer redisPool.Close()

reg := Registry{Name: "test"}

reg.Set("name", "Tit Petric")

val, err := reg.GetAll()

if err !'= nil || val["name"] != "Tit Petric" {

t.Errorf("Got error when getting all keys: %%*v/%s\n", val, err)

This brings our test coverage up to 94.1%. There’s some lines which we missed, let’s look at the
HTML report.

API foundations in Go

N =

w

O© 00 I O O

10
11

Test driven API development 68

high coverage

Coverage report for GetAll

It seems we missed one line in our tests. Generally, this will be executed when we have an empty
result set from KEYS. There are two approaches to increasing code coverage here - provide Mock
objects for whatever interface you have, or, provide data and requests that will produce the wanted
response. Let’s try to use the second method, by writing a new test.

Testing GetAll output

func TestRegistryGetAllErr(t *testing.T) {
redisPool := bootstrap.RedigoPool()
defer redisPool.Close()

reg := Registry{Name: "testerr"}
val, err := reg.GetAll()
if err != nil || len(val) != 0 {
t.Errorf("Expected len=0 and error=nil when getting all keys: %#v/%s\n", val, er\
r)
}

Since the Registry name ‘testerr’ doesn’t exist in redis, the redis.Strings method will return an
error. We use the testing function above to expect this error, and increase our code coverage to 100%.

With this, we have a fully featured implementation to use in our HTTP APL

API foundations in Go

© 00 N O O b W N =

N =N
=N O O s~ WD~

Your first API

We learned enough to implement our first full API. We will use the package we created in the

previous chapter, to implement an API that has these specifications:
« /get with parameter key - will return value from redis
« /set with parameters key, value - will set a key/value pair

« /getAll retrieve all redis keys

We will use the net/http package to provide routing to your APL

Putting the API together

First, we create a variable which will hold our Registry type.

var apiService api.Registry;

And we create two utility functions to handle responses - an error response, and an “anything”
response (interface{}). To make our endpoint implementation shorter, we even create a generic

respond function.

Utility functions to encode API responses

func respondWithError(w http.ResponseWriter, err error) {

response := map[string]string{}
response["error"] = fmt.Sprintf("%s", err)
response_json, _ := json.Marshallndent(response, "", "\t")

fmt.Fprintf(w, string(response_json[:]))

}

func respondWith(w http.ResponseWriter, response interface{}) {
response_json, _ := json.Marshallndent(response, "", "\t")
fmt.Fprintf(w, string(response_json[:]))

}

func respond(w http.ResponseWriter, response interface{}, err error) {

if err !'= nil {
respondWithError(w, err)
return

}

respondWith(w, response)

© 00 N O O b W N =

10
11
12
13
14
15
16

Your first API 70

With these we can create our http request handlers for individual API calls; Setting up the API is as
easy as this:

Implementing the API call for GetAll

apiService = api.Registry{Name: "api"}

http.HandleFunc("/getAll", func(w http.ResponseWriter, r *http.Request) {
response, err := apiService.GetAll()
respond(w, response, err)

)

http.HandleFunc("/get", func(w http.ResponseWriter, r *http.Request) ({
key := r.FormValue("key")
response, err := apiService.Get(key)
respond(w, response, err)

)

http.HandleFunc("/set", func(w http.ResponseWriter, r *http.Request) ({
key := r.FormValue("key")
value := r.FormValue("value")
response, err := apiService.Set(key, value)
respond(w, response, err)

1))

And we have a fully functioning APL

Testing some requests:

$ curl http://localhost:8080/set ?key=foo&value=bar
"OK ™
$ curl http://localhost:8080/set?key=name&value=Tit%20Petric
noK "
$ curl http://localhost:8080/get?key=name
"Tit Petric”
$ curl http://localhost:8080/getAll
{
"foo": "bar",

"name": "Tit Petric"

Benchmarking it

As a curiosity, let’s benchmark our API service. 'm only interested in the “get” endpoint, so 'm
running apache bench with some options like -c 4 (concurrency) and -n 50000. I'm doing this from
inside a virtual machine on the same host - so take the benchmarks with a pinch of salt.

API foundations in Go

Your first API 71

Requests per second: 1908.96 [#/sec] (mean)
This is the result I get. And keep in mind, we don’t even have goroutines yet! Let’s add those.
Requests per second: 1947.21 [#/sec] (mean)

Uh, this is surprising. It’s not exactly the request rate we’d expect. To understand why, we have
to know that “net/http” server is already creating goroutines for each connection. That means that
unless we're doing some kind of parallel processing, there will be no positive impact from using
goroutines. Since goroutines are lightweight compared to threads, you might not even notice any
impact.

So, when it comes to using goroutines, we can sum up our experience like this: If you're doing
any kind of parallel workload, or I/O operations, using goroutines can speed up the response times
of your APIs. If you are doing atomic operations or sequential requests, you will not squeeze a
performance benefit out of your code by using goroutines, as the request is already within one.

Profiling it

The package “net/http” also provides runtime profiling data for your server. This way you can see
where your API is really spending CPU cycles and memory. To use pprof, you’ll have to add this
import line to your application:

import _ "net/http/pprof"

After you import this package and start your server, you can navigate your browser tohttp://[server] : 8080/debug,
You can also use the go tool pprof to review many aspects of your API service. For example:

$ go tool pprof http://[server]:8080/debug/pprof/profile

This gives you a console where you can issue commands like topN (‘top10 —cum/flat’) to find the
worst performing functions in your service. There are also commands like “dot > file.dot” which will
generate a call graph which you can then render with graphviz.

The tool pprof is very powerful. If you want some information from your API service while it’s alive,
it’s most likely that you will find it by researching run time options and analyzing the output.

Flame graph

With the pprof library enabled, there are also 3rd party tools available to analyze profiler data. One
of such tools is go-torch®® which generates a flame graph in svg format. To install go-torch, along
with the FlameGraph dependency, issue the following commands:

*https://github.com/uber/go-torch

API foundations in Go

https://github.com/uber/go-torch
https://github.com/uber/go-torch

Your first API 72

$ gvt fetch github.com/uber/go-torch
$ git clone --depth=1 https://github.com/brendangregg/FlameCGraph.git /opt/flamegraph

This will download and compile the go-torch binary, which will be placed in the bin/ folder of your
current working directory. I've created a small script to aid me in running it:

Running go-torch to provide 15 seconds of profile data

#!/bin/bash
PATH="$PATH: /opt/flamegraph"
bin/go-torch --time=15 --file "torch.svg" --url http://10.1.1.2:8080

The run, if everything went well, will provide us with a flame graph in the file “torch.svg”. Put the
file on your web server and open it with a browser and you should get something like this.

Flame Graph Reset Search

| syscall.Write
net.(*netFD).Wr..

| syscall.Sys..
syscall.write

Matched: 18.3%

The Flame graph for our API

With the graph it’s possible to search for some specific function or package (top right corner).
It’s also possible to click on an individual block to zoom in on the flame. Clicking our flame
(main.main.func2), I can inspect where I'm spending time and with that what can be optimized.

API foundations in Go

~
w

Your first API
Reset Zoom Flame Graph Reset Search
]
[} [|
[1] B s [f RS
[} B svs. B8 runtime.. [} LN |
lsysaallSyseall B sys. [0 runtim.. [] |
sysaallwrite . net("met. . [EEWERE run...
B0 sysaallWiite . [ebffennn 6N [EEEWes 0 en..
net.(*netfD).Wpie . bufio.("Re. | [[netru. FEEIRGENE IEEs
e (Feann]Wite) corcnEREas, (@ nefs. netsetDea. [enco. [B0
github.com/.. [FAME net.(. net(*net. §r. = B EEEEEED CESOT

bufio.(*Writer).flush

*l

ffoundations/api.Registry.Get . [mainsespond T net/hitp.
‘mainmainfunc2
[net/http.HandlerFunc.servesTle
[net/http.(*ServeMux).ServeR TP
net/http.serverdandler.ServeHTTP

net/http.(*eonn)serve
untime.gosdit
Al

Matched: 18.3%
Zooming in on our API
With our simple API, there’s no low hanging fruit to optimize away, but you can see that most of

the time is taken by fetching data from Redis (about 50%), parsing the data (30%) and the remaining
time is taken by encoding this data to JSON and FormValue calls.

API foundations in Go

O© 00 I O O b W N =~

=
g b 0 N =~ O

Running your API in production

There are a couple of considerations to make when running Go in production. These considerations
range from providing configuration, deployment and having insight into the operation of your
application. We'll try to cover some established practice to give you a sense of what it takes for
frictionless operations.

Configuration

Running applications in production requires a way to pass configuration. A common way to pass
configuration via command line is the flag package* . Because we follow the Twelve-Factor app
paradigm, we want the configuration to come from the environment. The package namsral/flag*
provides a drop in replacement for the Go flag package.

You should use this package in a way that causes minimal friction towards your application. It is
recommended to define flags inside your func main and not as global variables. This forces you to
be strict about dependency injection patterns, which also makes testing easier.

Example application using namsral/flag

package main

import "github.com/namsral/flag"
import "fmt"

import "os
func main() {
fs := flag.NewFlagSetWithEnvPrefix(os.Args[@], "GO", 0)

var (
port = fs.Int("port", 8080, "Port number of service")

)
fs.Parse(os.Args[1:])

fmt.Printf("Server port: %d\n", *port)

A good practice shown in the example is to prefix your environment variables, so you don’t create
any clashes with the default linux environment (usual culprits: MAIL, HOSTNAME, USER). In our

**https://golang.org/pkg/flag/
*https://github.com/namsral/flag

https://golang.org/pkg/flag/
https://github.com/namsral/flag
https://golang.org/pkg/flag/
https://github.com/namsral/flag

O O B W N

Running your API in production 75

case, we will use a GO prefix, meaning we can safely define GO_MAIL, GO_HOSTNAME and
GO_USER.

Practical examples of passing arguments/config

$ go run flags.go

Server port: 8080

$ go run flags.go -port==80
Server port: 80

$ PORT=80 go run flags.go
Server port: 8080

$ GO_PORT=80 go run flags.go
Server port: 80

When running “go” via docker, the environment variables are passed via additional configuration
parameters. Since we declared a GO prefix for the environment variables used, we can extract only
these and pass them to a docker run command. You should pass them explicitly, with the --env-file
option or individual -e options.

A Docker example with flags.sh

#!/bin/bash

source ../shell/common.sh

gvt fetch "github.com/namsral/flag"

printenv | grep GO_ > /tmp/docker.env

docker run --rm --env-file /tmp/docker.env -i -v “pwd :/go/src/app -w /go/src/app go\
lang go run flags.go

You can run this script with GO_PORT=80 ./flags.sh.

The chosen library also supports parsing configuration from a configuration file, which might be
something you prefer over passing environment variables. We usually keep settings like this in some
sort of central registry (configuration database) which we extend based on our needs.

Building an application

Building an application is as easy as running:

API foundations in Go

Running your API in production 76

$ go build flags.go

This will create a flags binary in your current folder, which you can run just like any other program.
Since we defined a configuration flag, we can quickly test it to see if it works:

Practical examples of passing arguments/config

$./flags

Server port: 8080

$./flags -port=80
Server port: 80

$ PORT=80 ./flags
Server port: 8080

$ GO_PORT=80 ./flags
Server port: 80

The binary itself behaves just like go run, except that the compilation was already done beforehand.
It’s also a static binary, so you can copy it to another server, and run it there - without needing the
Go runtime, or some libraries that might be required (Go doesn’t rely on shared libraries).

Deploying an app somewhere can be simple

$ scp flags luxor:/root

flags 100% 2627KB 2.6MB/s 00:01
$ ssh luxor "/root/flags"

Server port: 8080

$ ssh luxor "/root/flags -port 80"

Server port: 80

$ ssh luxor "GO_PORT=80 /root/flags"

Server port: 80

If you needed to build against a different operating system or architecture, it’s possible to pass
environment variables to go build: GOOS and GOARCH specifically. With these you can control
what kind of destination system you’re building for. More information is available in Go build
documentation?

*https://golang.org/pkg/go/build/

Embedding binary assets into an application

For reasons of convenience, you might want to embed the data which you need for your application
into your binary directly. This might be anything from static javascript, css and image assets, that

API foundations in Go

https://golang.org/pkg/go/build/
https://golang.org/pkg/go/build/
https://golang.org/pkg/go/build/

O U W N

Running your API in production 77

are used to provide some kind of web interface for your API. With the popularity of front-end
frameworks like VueJS*, you can package the complete front-end application together with your
API service.

Embedding binary assets into your API is convenient for your users. You provide a single executable
which will contain everything, so they don’t need to download an installer or extract zip files. We
will use go-bindata*” and resort to code generation to add all the data into the executable with go

build.

I wrote a simple static file editor called Pendulum®® where I implemented all the below steps to
provide a binary download with all the needed data embedded into the binary.

Code generation?

Well, sure. It’s simple enough. The go-bindata tool already enables us to create a .go file from a
public_html folder, for example. This is perfect for our use case. But why resort to a bash script or
Makefile to produce it? We can use Go’s code generation tool and just call go generate before we
call go build.

If you want to get started with code generation, all you need to do is include a single comment
somewhere in your source code, main.go for example:

package main
//go:generate echo "Hello world"

func main() {

}

When you rungo generate, you will find out that it prints “Hello world”. It’s not really a requirement
that you would generate any code with go generate. Whatever you put after the //go: generate text
will be executed. You can even run go build if you wanted.

Shttps://vuejs.org/
*"https://github.com/jteeuwen/go-bindata
*https://github.com/titpetric/pendulum

API foundations in Go

https://vuejs.org/
https://github.com/jteeuwen/go-bindata
https://github.com/titpetric/pendulum
https://vuejs.org/
https://github.com/jteeuwen/go-bindata
https://github.com/titpetric/pendulum

o N O O b W N =

Running your API in production 78

package main

//go:generate echo "Hello world"
//go:generate go run main.go

func main() {
println("Hello world from Go")

}

Running it will produce the expected result:

go generate
Hello world
Hello world from Go

Inception! Well, go generate is... interesting. Node programs are using babel to provide ES6/ES7
syntax capabilities to Node ES5 runtime, and people are attempting to use the same approach to
provide Go with functionality beyond the current scope of the language.

For example: The genny®” project is an example more directed at generating typed-code so you don’t
really have to copy paste aggressively, but projects like Have®® went closer to what Babel is doing
with Node - providing a language which transpiles to Go. I don’t know of any other attempts that
got more traction, yet. The discussions about Go2 and generics seem to suggest however, that there’s
some interest for this.

Well, for our case, we're slightly more boring, we’re just trying to package some data in our
application, so let’s interrupt this social commentary and continue:

//go:generate go-bindata -prefix front/src -o assets/bindata.go -pkg assets -nomemco\
py front/src/dist/...

That’s a bit of a long line, let’s break it down just for visual inspection:

e //go:generate - hint for go generate,

« go-bindata - main command that executes,

« -prefix front/src - exclude “front/src” from package,

« -0 assets/bindata.go - generated output file location,

« -pkg assets - name of the package we’re generating,

+ -nomemcopy - an optimization for a lower memory footprint®,
« front/src/dist/. .. - the location we’re packing.

This creates an assets package in your application folder, which you can import with a short import,
i.e. app/assets, where app matches your application folder.

*https://github.com/cheekybits/genny
*°http://havelang.org/
*https://github.com/jteeuwen/go- bindata#lower-memory- footprint

API foundations in Go

https://github.com/cheekybits/genny
http://havelang.org/
https://github.com/jteeuwen/go-bindata#lower-memory-footprint
https://github.com/cheekybits/genny
http://havelang.org/
https://github.com/jteeuwen/go-bindata#lower-memory-footprint

© 00 N1 O O b W N =

= SN
W N s,

Running your API in production 79

Serving embedded files via HTTP

This is where things get a little bit complicated. Or simple, after you read a bit of documentation. If
you wanted to serve local files, you would use something like the following line of code:

folder := http.Dir("/")
server := http.FileServer(folder)
http.Handle("/", server)

In fact, the package go-bindata-assetfs*” provides an implementation for http.FileServer. Using it is
simple enough:

import "github.com/elazarl/go-bindata-assetfs"
import "app/assets”

/]
func main() {
/] ...
files := assetfs.AssetFS{
Asset: assets.Asset,
AssetDir: assets.AssetDir,
AssetInfo: assets.Assetlnfo,
Prefix: "dist",
}
server := http.FileServer(&files)
/]
}

There is only a slight hiccup. [am using a Vue]S app with pushHistory enabled. This means, that
when the user navigates the app, they will see links without a shebang (hash, #), but plain ordinary
absolute links like /blog/about.md. Which don’t exist in this asset filesystem, but are handled with
the application.

Well, turns out the solution is simple enough. The assetfs.AssetFS structure has functions
AssetInfo (which is the equivalent of os . Stat), and the function Asset (sort of like ioutil.ReadFile).
With this it’s possible to check if a file exists in the asset filesystem, and to output a different file if
it doesn’t:

**https://github.com/elazarl/go-bindata-assetfs

API foundations in Go

https://github.com/elazarl/go-bindata-assetfs
https://github.com/elazarl/go-bindata-assetfs

O© 00 I O O b W N =

N = = =S
0 N O O & W N -~ O

Running your API in production 80

// Serves index.html in case the requested file isn't found
// (or some other os.Stat error)
func servelndex(serve http.Handler, fs assetfs.AssetFS) http.HandlerFunc {
return func(w http.ResponseWriter, r *http.Request) {
_, err := fs.AssetInfo(path.Join(fs.Prefix, r.URL.Path))

if err !'= nil {
contents, err := fs.Asset(path.Join(fs.Prefix, "index.html"))
if err !'= nil {
http.Error(w, err.Error(), http.StatusNotFound)
return
}

w.Header().Set("Content-Type", "text/html")
w.Write(contents)
return

}

serve.ServeHTTP(w, r)

In case the file is found, I use the provided ServeHTTP method, instead of providing my own
implementation. All it takes to use this is a bit of a change in the handler which we defined before:

http.HandleFunc("/", servelndex(server, assets))

The function serveIndex returns a http.HandlerFunc, and this line was changed accordingly. This
provides a full implementation of how to serve your data which you add to your application with
go generate and go-bindata. And if you want to skip the //go:generate part and just put it in your
CI scripts, that’s fine too!

And with this I implemented a single-executable release for Pendulum®. Grab it from the GitHub
releases page® to check it out.

Deploying an application

Deploying an application can be as simple as copying the binary produced with docker build,
and managing scripts and configuration around it. But deploying the application with docker itself
has some benefits. Creating an image containing the docker binary might seem like an unusual or
wasteful practice, but gives many benefits.

1. The application can be downloaded and run with a simple docker run command (pull mode),

**https://github.com/titpetric/pendulum
**https://github.com/titpetric/pendulum/releases

API foundations in Go

https://github.com/titpetric/pendulum
https://github.com/titpetric/pendulum/releases
https://github.com/titpetric/pendulum/releases
https://github.com/titpetric/pendulum
https://github.com/titpetric/pendulum/releases

O© 00 1 O O b W N =

NN
= O

Running your API in production 81

2. Docker images can be transferred between hosts (push mode),
3. Docker is also a simple process manager (--restart=always)

The other option is to create init.d scripts, or run an instance of supervisord to manage execution
and restarting of your service. There are also other benefits from docker - isolation from a security
standpoint for one.

Even if your application uses many hosts because of scale, running it from Docker should be
considered - the Docker images can be versioned, and if you’re not exactly doing upgrades of the
data model, this means that you can also safely roll-back if you deployed a bug to production.

Automating a deployment of an application can be a dirty business, but when you’re deploying
the complete environment for the application along with it, you’re saving a lot of time by avoiding
certain discussions like “Did you copy all the files?”, or “I don’t see the changes, when will the deploy
finish?”, “This one file is outdated.” and so on.

In a sense, deployment with docker is “atomic”. In another sense - it’s progressive. You can spawn
new container instances of the updated application, and when you verify it works, you can spin
down the old, out of date containers. You can use clustering tools like Docker Swarm® to achieve
this from the start.

Creating a Docker image

Docker images are created from a Dockerfile. Since Go binaries are ‘portable’, they can run on the
smallest Docker image around, Alpine Linux. Keep in mind, that sometimes, just having the binary
is not enough, as some of the libraries used need external data files. For example, a web server might
need /etc/mime.types to return correct Content-type headers for files, an SSL library would need
a list of SSL root certificates, usually found in /etc/ssl/certs. This is why it’s better to use Alpine
linux, instead of ‘scratch’ as the base image - it provides a package manager, allowing you to install
some things, without having to COPY them in.

Example Dockerfile for our app

FROM alpine:latest

ADD flags /flags
RUN chmod +x /flags ; sync; sleep 1

WORKDIR /

ENV GO_PORT 8080
EXPOSE $GO_PORT

ENTRYPOINT ["/flags"]

**https://docs.docker.com/swarm/

API foundations in Go

https://docs.docker.com/swarm/
https://docs.docker.com/swarm/

Running your API in production 82

Building the Docker image is a one liner -

Build Go application and create docker image

#!/bin/bash
docker build --rm --no-cache=true -t go-flags .

We can run our application with full control of the network port on which it runs. You can expose
this port on the host using -p or -P docker options. If you’re using - -net=host mode, you can prevent
some conflicts here with existing services by running multiple containers on different ports.

$ docker run -e GO_PORT=81 --rm -i go-flags
Server port: 81

The images you create can be used on multiple hosts, by using a Docker registry like Docker Hub or
Quay.io. You can also set up your own docker registry. The most basic way to transfer the images
between hosts is to save and load them.

$ docker save -o go-flags.tar go-flags

$ scp go-flags.tar luxor:/root

go-flags.tar 1\
Q0% T565KB 2.5MB/s ©0:03

$ ssh luxor "docker load -i go-flags.tar"

$ ssh luxor "docker run -e GO_PORT=1234 --rm go-flags"

Server port: 1234

Depending on what you need, pick a deployment strategy which works for you.

I’'m of the opinion that each container should be disposable. If you provide any kind of data storage,
it should be done with volume mounts, or some external API service (Amazon S3 for example). You
know exactly which data needs to be backed up, and it doesn’t include the application itself. The app
can be rebuilt at any time, and the container re-created from scratch. ’'m aiming to reproduce these
processes with automation, not by following a setup checklist. My longest running practice is, that
I can remove any running container with “docker rm -f [name]”. Starting them again or creating a
new environment should be just as trivial.

Exposing run-time information

When you deploy an application, you need to have some metrics about how it performs. While
you can rely on pprof, and that access log from your load balancer, it might be neat to export some

API foundations in Go

© 00 N O O & W N =

N N = ==Y
G900 O R O N RO

Running your API in production 83

additional information about your app. Maybe you want to track sessions, sign-ups, or some variable
which you can’t get by processing the access log. You can use expvar to log these values to a public
interface, available over HTTP on /debug/vars in JSON format. To use it, just import it like this:

import "expvar"

You should use the expvar package to register some public variables, which will show up in
/debug/vars output. The recommended way to do this is in the package init function. Let’s extend
our registry API with expvar:

Add expvar capability to your Registry API

import "expvar"

var (
countGet *expvar.Int
countSet *expvar.Int
countDel *expvar.Int
countGetAll *expvar.Int

countGetAllGet *expvar.Int

func init() {
countGet = expvar.NewInt("registry.get")
countSet = expvar.NewInt("registry.set")

countDel = expvar.Newlnt("registry.del")

countGetAll = expvar.NewInt("registry.getAll")
countGetAllGet = expvar.NewInt("registry.getAll.get")

Changing a counter value is just as easy as calling value.Add(1). With the counters for GetAll, I
also defined a GetAl1Get counter, which I increment by a larger value: int64(len(keys)). In practice
this tells me how many keys on average I have in the registry (three in my case).

Looking at the output of /debug/vars, after some manual requests, I can see all the counters which
we defined:

"registry.del": O,
"registry.get": 5,
"registry.getAll": 18,
"registry.getAll.get": 54,
"registry.set": 2

API foundations in Go

Running your API in production 84

The metrics you define can provide invaluable information about your application and how it
performs. Monitoring the metrics values you set is an important part of any application, making
sure that you're on the right track towards performance and scalability.

To graph the metrics you can use a variety of tools like Grafana®® or OpenTSDB?’. We use also a
few others like Ganglia®®, Munin®” and most recently, netdata*. Depending on how long you’d like
to keep your metrics, and how much detail you want to store your metrics history, you have quite
the choice ahead of you.

*http://grafana.org/
*"http://opentsdb.net/
*®http://ganglia.info/
**http://munin-monitoring.org/
“*https://github.com/firehol/netdata

API foundations in Go

http://grafana.org/
http://opentsdb.net/
http://ganglia.info/
http://munin-monitoring.org/
https://github.com/firehol/netdata
http://grafana.org/
http://opentsdb.net/
http://ganglia.info/
http://munin-monitoring.org/
https://github.com/firehol/netdata

Resources

You can find all the examples published on GitHub in the repository titpetric/books*! in the folder
api-foundations.

As you will check out the repository, code samples are divided into chapters, and individual
chapters have run scripts, which you can use to run all the samples from the repositories. External
dependencies have been vendored into the repository.

All examples are meant to be run with docker, but a working go environment should be enough.

If you for some reason can’t use docker, just empty the contents of the common.sh file under shell
folder.

“‘https://github.com/titpetric/books

https://github.com/titpetric/books
https://github.com/titpetric/books

	Table of Contents
	Introduction
	About me
	Why Go?
	Who is this book for?
	How should I study it?

	Setting up your environment
	Networking
	Setting up a runner for your Go programs
	Setting up Redis
	Other services

	Data structures
	Declaring structs
	Casting structs
	Declaring interfaces
	Abusing interfaces
	Embedding and composition
	Limiting goroutine parallelization
	Slices
	The slice operator
	Allocation by append
	Copying slices
	Using slices in channels

	Organizing your code
	Suggested package structure
	What to put there?
	Format your source code

	Encoding and decoding JSON
	Encoding structs into JSON
	Decoding JSON contents into structs
	Nested structures
	Anonymous structs

	Serving HTTP requests
	Setting up a simple web server
	Routing logic
	Routing and middleware with go-chi
	Advanced middleware - CORS
	JWT authentication middleware

	Parallel fetching of data
	A simple API service
	Making it parallel
	Some tips

	Using external services (Redis)
	Client library
	Talking to a Redis instance
	Worst case scenario
	Let's scale it
	Connection pool

	Using external services (MySQL)
	Quick start
	Goodbye simplicity
	Simplicity redux
	Connection pool
	Scaling MySQL beyond MySQL

	Test driven API development
	Creating a simple API
	Testing an API
	More detailed testing
	A note on testing
	Implementing the complete API

	Your first API
	Putting the API together
	Benchmarking it
	Profiling it

	Running your API in production
	Configuration
	Building an application
	Embedding binary assets into an application
	Serving embedded files via HTTP
	Deploying an application
	Creating a Docker image
	Exposing run-time information

	Resources

